2025届北京市北方交通大学附属中学高一数学第二学期期末预测试题含解析_第1页
2025届北京市北方交通大学附属中学高一数学第二学期期末预测试题含解析_第2页
2025届北京市北方交通大学附属中学高一数学第二学期期末预测试题含解析_第3页
2025届北京市北方交通大学附属中学高一数学第二学期期末预测试题含解析_第4页
2025届北京市北方交通大学附属中学高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市北方交通大学附属中学高一数学第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A. B. C. D.2.已知向量,则下列结论正确的是A. B. C.与垂直 D.3.在区间上随机选取一个数,则满足的概率为()A. B. C. D.4.已知,且为第二象限角,则()A. B. C. D.5.若、、,且,则下列不等式中一定成立的是()A. B. C. D.6.设集合,,若,则的取值范围是()A. B. C. D.7.已知直线经过两点,则的斜率为()A. B. C. D.8.过点且与点距离最大的直线方程是()A. B.C. D.9.三边,满足,则三角形是()A.锐角三角形 B.钝角三角形 C.等边三角形 D.直角三角形10.已知数列1,,,9是等差数列,数列1,,,,9是等比数列,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知球的一个内接四面体中,,过球心,若该四面体的体积为,且,则球的表面积的最小值为_________.12.已知变量x,y线性相关,其一组数据如下表所示.若根据这组数据求得y关于x的线性回归方程为,则______.x1245y5.49.610.614.413.已知实数满足,则的最大值为_______.14.已知中,,且,则面积的最大值为__________.15.若,则满足的的取值范围为______________;16.把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.18.已知公差不为零的等差数列{an}和等比数列{bn}满足:a1=b1=3,b2=a4,且a1,a4,a13成等比数列.(1)求数列{an}和{bn}的通项公式;(2)令cn=an•bn,求数列{cn}的前n项和Sn.19.从全校参加科技知识竞赛初赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直方图(如图),图中从左到右各小组的小长方形的高之比是,最后一组的频数是6.请结合频率分布直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)求样本中成绩在分的学生人数;(3)从样本中成绩在90.5分以上的同学中随机地抽取2人参加决赛,求最高分甲被抽到的概率.20.如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求点在上,点在上,且对角线过点,已知米,米.(1)要使矩形的面积大于64平方米,则的长应在什么范围内?(2)当的长为多少时,矩形花坛的面积最小?并求出最小值.21.已知向量.(1)若,求的值;(2)当时,求与夹角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

正四棱锥P-ABCD的外接球的球心在它的高上,记为O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面积,故选A.考点:球的体积和表面积2、C【解析】

可按各选择支计算.【详解】由题意,,A错;,B错;,∴,C正确;∵不存在实数,使得,∴不正确,D错,故选C.【点睛】本题考查向量的数量积、向量的平行,向量的模以及向量的垂直等知识,属于基础题.3、D【解析】

在区间上,且满足所得区间为,利用区间的长度比,即可求解.【详解】由题意,在区间上,且满足所得区间为,由长度比的几何概型,可得概率为,故选D.【点睛】本题主要考查了长度比的几何概型的概率的计算,其中解答中认真审题,合理利用长度比求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4、D【解析】

首先根据题意得到,,再计算即可.【详解】因为,且为第二象限角,,..故选:D【点睛】本题主要考查正切二倍角的计算,同时考查了三角函数的诱导公式和同角三角函数的关系,属于简单题.5、D【解析】

对,利用分析法证明;对,不式等两边同时乘以一个正数,不等式的方向不变,乘以0再根据不等式是否取等进行考虑;对,考虑的情况;对,利用同向不等式的可乘性.【详解】对,,因为大小无法确定,故不一定成立;对,当时,才能成立,故也不一定成立;对,当时不成立,故也不一定成立;对,,故一定成立.故选:D.【点睛】本题考查不等式性质的运用,考查不等式在特殊情况下能否成立的问题,考查思维的严谨性.6、A【解析】因为,,且,即,所以.故选A.7、A【解析】

直接代入两点的斜率公式,计算即可得出答案。【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。8、C【解析】

过点且与点距离最大的直线满足:,根据两直线互相垂直,斜率的关系可以求出直线的斜率,写出点斜式方程,最后化成一般方程,选出正确的选项.【详解】因为过点且与点距离最大的直线满足:,所以有,而,所以直线方程为,故本题选C.【点睛】本题考查了直线与直线垂直时斜率的性质,考查了数学运算能力.9、C【解析】

由基本不等式得出,将三个不等式相加得出,由等号成立的条件可判断出的形状.【详解】为三边,,由基本不等式可得,将上述三个不等式相加得,当且仅当时取等号,所以,是等边三角形,故选C.【点睛】本题考查三角形形状的判断,考查基本不等式的应用,利用基本不等式要注意“一正、二定、三相等”条件的应用,考查推理能力,属于中等题.10、B【解析】

根据等差数列和等比数列性质可分别求得,,代入即可得到结果.【详解】由成等差数列得:由成等比数列得:,又与同号本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,易错点是忽略等比数列奇数项符号相同的特点,从而造成增根.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

求出面积的最大值,结合棱锥的体积可得到平面距离的最小值,进一步求得球的半径的最小值得答案.【详解】解:在中,由,且,

得,得.

当且仅当时,有最大值1.

过球心,且四面体的体积为1,

∴三棱锥的体积为.

则到平面的距离为.

此时的外接圆的半径为,则球的半径的最小值为,

∴球O的表面积的最小值为.

故答案为:.【点睛】本题考查多面体外接球表面积最值的求法,考查逻辑思维能力与推理运算能力,考查空间想象能力,是中档题.12、4.3【解析】

由所给数据求出,根据回归直线过中心点可求解.【详解】由表格得到,,将样本中心代入线性回归方程得.故答案为:4.3【点睛】本题考查线性回归直线方程,掌握回归直线的性质是解题关键,即回归直线必过中心点.13、【解析】

根据约束条件,画出可行域,目标函数可以看成是可行域内的点和的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件可以画出可行域,如下图阴影部分所示,目标函数可以看成是可行域内的点和的连线的斜率,因此可得,当在点时,斜率最大联立,得即所以此时斜率为,故答案为.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.14、【解析】

先利用正弦定理求出c=2,分析得到当点在的垂直平分线上时,边上的高最大,的面积最大,利用余弦定理求出,最后求面积的最大值.【详解】由可得,由正弦定理,得,故,当点在的垂直平分线上时,边上的高最大,的面积最大,此时.由余弦定理知,,即,故面积的最大值为.故答案为【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.15、【解析】

本题首先可确定在区间上所对应的的值,然后可结合正弦函数图像得出不等式的解集.【详解】当时,令,解得或,如图,绘出正弦函数图像,结合函数图像可知,当时,的解集为【点睛】本题考查三角函数不等式的解法,考查对正弦函数性质的理解,考查计算能力,体现了基础性,是简单题.16、1028【解析】图乙中第行有个数,第行最后的一个数为,前行共有个数,由知出现在第45行,第45行第一个数为1937,第个数为2011,所以.[来三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】

(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,是增函数,当时,使成立的有两个,又由知,与一一对应,故当时,有两不等实根;(2)因为,所以,所以,令,则,令,设,则,因为,所以,即在上是增函数,所以,设,则.(i)当时,的最小值为,所以,解得,或4(舍去);(ii)当时,的最小值为,不合题意;(iii)当时,的最小值为,所以,解得,或(舍去).综上知,或.【点睛】本题主要考查了函数的综合应用,其中解答中涉及到函数的奇偶性,对数函数的图象与性质,以及换元法和分类讨论思想的应用,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及推理与运算能力.18、(1)an=2n+1;bn=3n;(2)Sn=n•3n+1.【解析】

(1)利用基本元的思想,结合等差数列、等比数列的通项公式、等比中项的性质列方程,解方程求得的值,从而求得数列的通项公式.(2)利用错位相减求和法求得数列的前项和.【详解】(1)公差d不为零的等差数列{an}和公比为q的等比数列{bn},a1=b1=3,b2=a4,且a1,a4,a13成等比数列,可得3q=3+3d,a1a13=a42,即(3+3d)2=3(3+12d),解得d=2,q=3,可得an=3+2(n﹣1)=2n+1;bn=3n;(2)cn=an•bn=(2n+1)•3n,前n项和Sn=3•3+5•32+7•33+…+(2n+1)•3n,3Sn=3•32+5•33+7•34+…+(2n+1)•3n+1,两式相减可得﹣2Sn=9+2(32+33+…+3n)﹣(2n+1)•3n+1=9+2•(2n+1)•3n+1,化简可得Sn=n•3n+1.【点睛】本小题主要考查等差数列,等比数列通项公式,考查错位相减求和法,考查运算求解能力,属于中档题.19、(1)48;(2)30;(3)【解析】

(1)设样本容量为,列方程求解即可;(2)根据比例列式求解即可;(3)根据比例得成绩在90.5分以上的同学有6人,抽取2人参加决赛,列举出总的基本事件个数,然后列举出最高分甲被抽到的基本事件个数,根据概率公式可得结果.【详解】解:(1)设样本容量为,则,解得,所以样本的容量是48;(2)样本中成绩在分的学生人数为:人;(3)样本中成绩在90.5分以上的同学有人,设这6名同学分别为,其中就是甲,从这6名同学中随机地抽取2人参加决赛有:共15个基本事件,其中最高分甲被抽到的有共5个基本事件,则最高分甲被抽到的概率为.【点睛】本题考查频率,频数,样本容量间的关系,考查古典概型的概率公式,重点是列举出总的基本事件和满足题目要求的基本事件,是基础题.20、(1),(2)时,【解析】

(1)设,有题知,得到,再计算矩形的面积,解不等式即可.(2)首先将花坛的面积化简为,再利用基本不等式的性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论