2025届山东省德州市跃华中学高一数学第二学期期末联考试题含解析_第1页
2025届山东省德州市跃华中学高一数学第二学期期末联考试题含解析_第2页
2025届山东省德州市跃华中学高一数学第二学期期末联考试题含解析_第3页
2025届山东省德州市跃华中学高一数学第二学期期末联考试题含解析_第4页
2025届山东省德州市跃华中学高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省德州市跃华中学高一数学第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列的通项公式,其前项和为,则等于()A. B. C. D.2.已知数列满足,,,则的值为()A.12 B.15 C.39 D.423.某学校高一、高二、高三教师人数分别为100、120、80,为了解他们在“学习强国”平台上的学习情况,现用分层抽样的方法抽取容量为45的样本,则抽取高一教师的人数为()A.12 B.15 C.18 D.304.在平行四边形中,,若点满足且,则A.10 B.25 C.12 D.155.的值为A. B. C. D.6.若直线:与直线:垂直,则实数().A. B. C.2 D.或27.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率()A. B. C. D.8.已知锐角满足,则()A. B. C. D.9.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面的棱柱)的三视图如图所示,则该三棱柱的侧视图的面积为()A. B.3 C. D.1210.已知圆锥的底面半径为,母线与底面所成的角为,则此圆锥的侧面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线上存在满足以下条件的点:过点作圆的两条切线(切点分别为),四边形的面积等于,则实数的取值范围是_______12.已知与之间的一组数据,则与的线性回归方程必过点__________.13.若等差数列和等比数列满足,,则_______.14.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列,则此数列的通项公式为_____.15.把二进制数化为十进制数是:______.16.实数2和8的等比中项是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图为函数f(x)=Asin(Ⅰ)求函数f(x)=Asin(Ⅱ)若x∈0,π2时,函数y=18.如图,圆锥中,是圆的直径,是底面圆上一点,且,点为半径的中点,连.(Ⅰ)求证:平面;(Ⅱ)当是边长为4的正三角形时,求点到平面的距离.19.已知数列满足,.(1)证明:数列为等差数列;(2)求数列的前项和.20.在凸四边形中,.(1)若,,,求的大小.(2)若,且,求四边形的面积.21.已知的外接圆的半径为,内角,,的对边分别为,,,又向量,,且.(1)求角;(2)求三角形的面积的最大值并求此时的周长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

依据为周期函数,得到,并项求和,即可求出的值。【详解】因为为周期函数,周期为4,所以,,故选B。【点睛】本题主要考查数列求和方法——并项求和法的应用,以及三角函数的周期性,分论讨论思想,意在考查学生的推理论证和计算能力。2、B【解析】

根据等差数列的定义可得数列为等差数列,求出通项公式即可.【详解】由题意得所以为等差数列,,,选择B【点睛】本题主要考查了判断是否为等差数列以及等差数列通项的求法,属于基础题.3、B【解析】

由分层抽样方法即按比例抽样,运算即可得解.【详解】解:由分层抽样方法可得抽取高一教师的人数为,故选:B.【点睛】本题考查了分层抽样方法,属基础题.4、C【解析】

先由题意,用,表示出,再由题中条件,根据向量数量积的运算,即可求出结果.【详解】因为点满足,所以,则故选C.【点睛】本题主要考查向量数量积的运算,熟记平面向量基本定理以及数量积的运算法则即可,属于常考题型.5、B【解析】

试题分析:由诱导公式得,故选B.考点:诱导公式.6、A【解析】试题分析:直线:与直线:垂直,则,.考点:直线与直线垂直的判定.7、A【解析】设甲到达时刻为,乙到达时刻为,依题意列不等式组为,画出可行域如下图阴影部分,故概率为.8、D【解析】

根据为锐角可求得,根据特殊角三角函数值可知,从而得到,进而求得结果.【详解】,又,即本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够熟悉特殊角的三角函数值,根据角的范围确定特殊角的取值.9、A【解析】

根据侧视图的宽为求出正三角形的边长为4,再根据体积求出正三棱柱的高,再求侧视图的面积。【详解】侧视图的宽即为俯视图的高,即三角形的边长为4,又侧视图的面积为:【点睛】理解:侧视图的宽即为俯视图的高,即可求解本题。10、B【解析】

首先计算出母线长,再利用圆锥的侧面积(其中为底面圆的半径,为母线长),即可得到答案.【详解】由于圆锥的底面半径,母线与底面所成的角为,所以母线长,故圆锥的侧面积;故答案选B【点睛】本题考查圆锥母线和侧面积的计算,解题关键是熟练掌握圆锥的侧面积的计算公式,即(其中为底面圆的半径,为母线长),属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

通过画出图形,可计算出圆心到直线的最短距离,建立不等式即可得到的取值范围.【详解】作出图形,由题意可知,,此时,四边形即为,而,故,勾股定理可知,而要是得存在点P满足该条件,只需O到直线的距离不大于即可,即,所以,故的取值范围是.【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式,意在考查学生的转化能力,计算能力,分析能力,难度中等.12、【解析】

根据线性回归方程一定过样本中心点,计算这组数据的样本中心点,求出和的平均数即可求解.【详解】由题意可知,与的线性回归方程必过样本中心点,,所以线性回归方程必过.故答案为:【点睛】本题是一道线性回归方程题目,需掌握线性回归方程必过样本中心点这一特征,属于基础题.13、【解析】

设等差数列的公差为,等比数列的公比为,根据题中条件求出、的值,进而求出和的值,由此可得出的值.【详解】设等差数列的公差和等比数列的公比分别为和,则,求得,,那么,故答案为.【考点】等差数列和等比数列【点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.14、【解析】

由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.15、51【解析】110011(2)16、【解析】所求的等比中项为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)f(x)=23【解析】

(Ⅰ)根据三角函数的图像,得到周期,求出ω=2,再由函数零点,得到2×π6+φ=2kπ,k∈Z(Ⅱ)先由题意得到f(x)∈-1,233,再将函数【详解】(Ⅰ)由图象知,T∴T=π,ω=2∵2×π6+φ=2kπ,k∈Z,及而f(0)=Asin(-π3故f(x)=2(Ⅱ)∵x∈∴2x-π3∈又函数y=f(x)2-2f(x)-m∵f(x)∈∴f(x)-1因此,实数m的取值范围是-1,3.【点睛】本题主要考查由三角函数的部分图像求解析式的问题,以及由函数的零点求参数的问题,熟记三角函数的图像与性质即可,属于常考题型.18、(Ⅰ)见证明;(Ⅱ)【解析】

(Ⅰ)由平面,证得,再由为等边三角形,得到,利用线面垂直的判定定理,即可证得平面;(Ⅱ)利用等体积法,即可求得点到平面的距离.【详解】(Ⅰ)证明:在圆锥中,则平面,又因为平面,所以,因为,,所以,又,所以为等边三角形,因为为中点,所以,又,所以平面;(Ⅱ)依题意,,因为为直径,所以,又,所以,中,边上的高为,的面积为,又,,则面积为,所以,解得.【点睛】本题主要考查了线面垂直的判定与证明,以及利用等体积法求解点面距,其中解答中熟练线面位置关系的判定定理,以及合理运用等体积法的运用是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)证明见解析;(2)【解析】

(1)将已知条件凑配成,由此证得数列为等差数列.(2)由(1)求得数列的通项公式,进而求得的表达式,利用分组求和法求得.【详解】(1)证明:∵∴又∵∴所以数列是首项为1,公差为2的等差数列;(2)由(1)知,,所以.所以【点睛】本小题主要考查根据递推关系式证明等差数列,考查分组求和法,属于中档题.20、(1);(2)【解析】

(1)在中利用余弦定理可求得,从而可知,求得;在中利用正弦定理求得结果;(2)在中利用余弦定理和可表示出;在中利用余弦定理可得,从而构造出关于的方程,结合和为锐角可求得;根据化简求值可得到结果.【详解】(1)连接在中,,,由余弦定理得:,则在中,由正弦定理得:,解得:(2)连接在中,由余弦定理得:又在中,由余弦定理得:,即又为锐角,则四边形面积:【点睛】本题考查解三角形的相关知识,涉及到正弦定理、余弦定理解三角形、三角形面积公式的应用;关键是能够利用余弦定理构造出关于角的正余弦值的方程,结合同角三角函数的平方关系构造方程可求得三角函数值;易错点是忽略角的范围,造成求解错误.21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论