2025届河北省唐山市唐山第一中学数学高一下期末监测模拟试题含解析_第1页
2025届河北省唐山市唐山第一中学数学高一下期末监测模拟试题含解析_第2页
2025届河北省唐山市唐山第一中学数学高一下期末监测模拟试题含解析_第3页
2025届河北省唐山市唐山第一中学数学高一下期末监测模拟试题含解析_第4页
2025届河北省唐山市唐山第一中学数学高一下期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省唐山市唐山第一中学数学高一下期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.下列函数中,在区间上单调递增的是()A. B. C. D.3.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A., B., C., D.,4.已知数列{an}满足且,则的值是()A.-5 B.- C.5 D.5.如图,某船在A处看见灯塔P在南偏东方向,后来船沿南偏东的方向航行30km后,到达B处,看见灯塔P在船的西偏北方向,则这时船与灯塔的距离是:A.10kmB.20kmC.D.6.已知某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.7.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A. B. C. D.8.在中,角的对边分别是,若,则角的大小为()A.或 B.或 C. D.9.已知函数,若,则()A. B. C. D.10.已知数列的前项和为,令,记数列的前项为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.适合条件的角的取值范围是______.12.已知圆是圆上的一条动直径,点是直线上的动点,则的最小值是____.13.英国物理学家和数学家艾萨克·牛顿(Isaacnewton,1643-1727年)曾提出了物体在常温环境下温度变化的冷却模型.现把一杯温水放在空气中冷却,假设这杯水从开始冷却,x分钟后物体的温度满足:(其中…为自然对数的底数).则从开始冷却,经过5分钟时间这杯水的温度是________(单位:℃).14.若等差数列的前项和,且,则______________.15.若集合,,则集合________.16.方程的解集是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.中,内角,,所对的边分别是,,,已知.(1)求角的大小;(2)设,的面积为,求的值.18.已知数列为等差数列,,,数列为等比数列,,公比.(1)求数列、的通项公式;(2)求数列的前n项和.19.已知等比数列的前n项和为,且,.(1)求数列的通项公式;(2)记,求的前n项和.20.已知函数,且的解集为.(1)求函数的解析式;(2)解关于的不等式,;(3)设,若对于任意的都有,求的最小值.21.某校对高二年段的男生进行体检,现将高二男生的体重(kg)数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[60,65)的人数为1.根据一般标准,高二男生体重超过65kg属于偏胖,低于55kg属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[60,65)内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据和之间能否推出的关系,得到答案.【详解】由可得,由,得到或,,不能得到,所以“”是“”的充分不必要条件,故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.2、A【解析】

判断每个函数在上的单调性即可.【详解】解:在上单调递增,,和在上都是单调递减.故选:A.【点睛】考查幂函数、指数函数、对数函数和反比例函数的单调性.3、B【解析】

试题分析:由题意知,样本容量为,其中高中生人数为,高中生的近视人数为,故选B.【考点定位】本题考查分层抽样与统计图,属于中等题.4、A【解析】试题分析:即数列是公比为3的等比数列.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.5、C【解析】

在中,利用正弦定理求出得长,即为这时船与灯塔的距离,即可得到答案.【详解】由题意,可得,即,在中,利用正弦定理得,即这时船与灯塔的距离是,故选C.【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】

由三视图判断该几何体是有三条棱两两垂直是三棱锥,结合三视图的数据可得结果.【详解】由三视图可得该几何体是如图所示的三棱锥,其中AB,BC,BP两两垂直,且,则和的面积都是1,的面积为2,在中,,则的面积为,所以该几何体的表面积为,故选:B.【点睛】三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7、D【解析】

设OA=1,则AB,分别求出三个区域的面积,由测度比是面积比得答案.【详解】设OA=1,则AB,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为π﹣1,黑色月牙部分的面积为π﹣(π﹣1)=1,图Ⅲ部分的面积为π﹣1.设整个图形的面积为S,则p1,p1,p3.∴p1=p1>p3,故选D.【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.8、B【解析】

通过给定条件直接利用正弦定理分析,注意讨论多解的情况.【详解】由正弦定理可得:,,∵,∴为锐角或钝角,∴或.故选B.【点睛】本题考查解三角形中正弦定理的应用,难度较易.出现多解时常借助“大边对大角,小边对小角”来进行取舍.9、D【解析】

令,根据奇偶性定义可判断出为奇函数,从而可求得,进而求得结果.【详解】令为奇函数又即本题正确选项:【点睛】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.10、B【解析】

由数列的前项和求通项,再由数列的周期性及等比数列的前项和求解.【详解】因为,当时,得;当,且时,,不满足上式,∴,所以,当时,;当是偶数时,为整数,则,所以;故对于任意正整数,均有:因为,所以.因为为偶数,所以,而,所以.故选:B.【点睛】本题考查数列的函数概念与表示、余弦函数的性质、正弦函数的诱导公式以及数列求和,解题的关键是当时,,和的推导,本题属于难题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据三角函数的符号法则,得,从而求出的取值范围.【详解】,的取值范围的解集为.故答案为:【点睛】本题主要考查了三角函数符号法则的应用问题,是基础题.12、【解析】

由题意得,==﹣=,即可求的最小值.【详解】圆,得,则圆心C(1,2),半径R=,如图可得:==﹣=,点是直线上,所以=()2=,∴的最小值是=.故答案为:.【点睛】本题考查了向量的数量积、转化和数形结合的思想,点到直线的距离,属于中档题.13、45【解析】

直接利用对数的运算性质计算即可,【详解】.故答案为:45.【点睛】本题考查对数的运算性质,考查计算能力,属于基础题.14、【解析】

设等差数列的公差为,根据题意建立和的方程组,解出这两个量,即可求出的值.【详解】设等差数列的公差为,由题意得,解得,因此,.故答案为:.【点睛】本题考查等差数列中项的计算,解题的关键就是要建立首项和公差的方程组,利用这两个基本量来求解,考查运算求解能力,属于基础题.15、【解析】由题意,得,,则.16、【解析】

令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【点睛】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用正弦定理可将已知等式化为,利用两角和差余弦公式展开整理可求得,根据可求得结果;(2)利用三角形面积公式可构造方程求出;利用余弦定理可直接求得结果.【详解】(1)由正弦定理可得:,即(2)设的面积为,则由得:,解得:由余弦定理得:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、三角形面积公式和余弦定理的应用;关键是能够通过正弦定理将边化角,得到角的一个三角函数值,从而根据角的范围求得结果.18、(1),.(2)【解析】

(1)先求出等差数列的首项和公差,求出等比数列的首项即得数列、的通项公式;(2)利用分组求和求数列的前n项和.【详解】(1)由题得.由题得.(2)由题得,所以数列的前n项和.【点睛】本题主要考查等差等比数列的通项的基本量的计算,考查数列通项的求法和求和,意在考查学生对这些知识的理解掌握水平.19、(1)(2)【解析】

(1)直接利用等比数列公式计算得到答案.(2),,利用错位相减法计算得到答案.【详解】(1)设等比数列的首项为,公比为,显然.,.两式联立得:,,.(2),所以.则,①,②,①-②得:.所以.【点睛】本题考查了等比数列通项公式,错位相减法,意在考查学生对于数列公式方法的灵活运用.20、(1)(2)答案不唯一,具体见解析(3)1【解析】

(1)根据韦达定理即可。(2)分别对三种情况进行讨论。(3)带入,分别对时三种情况讨论。【详解】(1)的解集为可得1,2是方程的两根,则,(2)时,时,时,(3),为上的奇函数当时,当时,,则函数在上单调递增,在上单调递减,且时,,在时,取得最大值,即;当时,,则函数在上单调递减,在上单调递减,且时,,在时,取得最小值,即;对于任意的都有则等价于或()则的最小值为1【点睛】本题主要考查了含参数的一元二次不等式,以及绝对值不等式,在解决含参数的不等式时首先要对参数进行讨论。本题属于难题。21、(1)(2)三段人数分别为3,2,1(3)【解析】试题分析:(1)利用频率分布直方图的性质能求出求出体重在[60,65)内的频率,由此能补全的频率分布直方图;(2)设男生总人

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论