东北育才中学2025届高一数学第二学期期末联考模拟试题含解析_第1页
东北育才中学2025届高一数学第二学期期末联考模拟试题含解析_第2页
东北育才中学2025届高一数学第二学期期末联考模拟试题含解析_第3页
东北育才中学2025届高一数学第二学期期末联考模拟试题含解析_第4页
东北育才中学2025届高一数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

东北育才中学2025届高一数学第二学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知三棱锥的所有顶点都在球的球面上,,则球的表面积为()A. B. C. D.3.在三棱锥中,,,则三棱锥外接球的体积是()A. B. C. D.4.2019年是新中国成立70周年,涡阳县某中学为庆祝新中国成立70周年,举办了“我和我的祖国”演讲比赛,某选手的6个得分去掉一个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场制作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以表示,则4个剩余分数的方差为()A.1 B. C.4 D.65.圆关于直线对称,则的值是()A. B. C. D.6.在中,角A,B,C所对的边分别为a,b,c,若,则()A. B. C. D.7.已知直线过点且与直线垂直,则该直线方程为()A. B.C. D.8.已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是,接下来的两项是,再接下来的三项是,依此类推,记此数列为,则()A.1 B.2 C.4 D.89.已知的内角的对边分别为,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形10.若直线过两点,,则的斜率为()A. B. C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.______.12.若三角形ABC的三个角A,B,C成等差数列,a,b,c分别为角A,B,C的对边,三角形ABC的面积,则b的最小值是________.13.等差数列中,,,设为数列的前项和,则_________.14.已知,且关于的方程有实数根,则与的夹角的取值范围是______.15.已知等比数列的公比为,它的前项积为,且满足,,,给出以下四个命题:①;②;③为的最大值;④使成立的最大的正整数为4031;则其中正确命题的序号为________16.圆的一条经过点的切线方程为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数()的一段图象如图所示.(1)求函数的解析式;(2)若,求函数的值域.18.已知函数,(1)求函数的最小正周期;(2)设的内角的对边分别为,且,,,求的面积.19.设二次函数f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.20.已知等差数列中,与的等差中项为,.(1)求的通项公式;(2)令,求证:数列的前项和.21.四棱柱中,底面为正方形,,为中点,且.(1)证明;(2)求点到平面的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】试题分析:当满足l⊂α,l⊥β时可得到α⊥β成立,反之,当l⊂α,α⊥β时,l与β可能相交,可能平行,因此前者是后者的充分不必要条件考点:充分条件与必要条件点评:命题:若p则q是真命题,则p是q的充分条件,q是p的必要条件2、A【解析】设外接圆半径为,三棱锥外接球半径为,∵,∴,∴,∴,∴,由题意知,平面,则将三棱锥补成三棱柱可得,,∴,故选A.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.3、B【解析】

三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心,外接球的半径为,可求出,然后由可求出半径,进而求出外接球的体积.【详解】由题意,易知三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心.因为,所以.因为,所以.设三棱锥外接球的半径为,则,解得,故三棱锥外接球的体积是.故选B.【点睛】本题考查了三棱锥的外接球体积的求法,考查了学生的空间想象能力与计算求解能力,属于中档题.4、B【解析】

由题意得x≥3,由此能求出4个剩余数据的方差.【详解】由题意得x≥3,则4个剩余分数的方差为:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故选B.【点睛】本题考查了方差的计算问题,也考查了茎叶图的性质、平均数、方差等基础知识,是基础题.5、B【解析】圆关于直线对称,所以圆心(1,1)在直线上,得.故选B.6、B【解析】

利用正弦定理边化角,结合和差公式以及诱导公式,即可得到本题答案.【详解】因为,所以,,,,,.故选:B.【点睛】本题主要考查利用正弦定理边角转化求角,考查计算能力,属于基础题.7、A【解析】

根据垂直关系求出直线斜率为,再由点斜式写出直线。【详解】由直线与直线垂直,可知直线斜率为,再由点斜式可知直线为:即.故选A.【点睛】本题考查两直线垂直,属于基础题。8、C【解析】

将数列分组:第1组为,第2组为,第3组为,,根据,进而得到数列的2017项为,数列的第2018项为,数列的第2019项为,即可求解.【详解】将所给的数列分组:第1组为,第2组为,第3组为,,则数列的前n组共有项,又由,所以数列的前63组共有2016项,所以数列的2017项为,数列的第2018项为,数列的第2019项为,所以故选:C.【点睛】本题主要考查了等差数列的前n项和公式的应用,其中解答中根据所给数列合理分组,结合等差数列的前n项和求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.9、A【解析】中,,所以.由正弦定理得:.所以.所以,即因为为的内角,所以所以为等腰三角形.故选A.10、C【解析】

直接运用斜率计算公式求解.【详解】因为直线过两点,,所以直线的斜率,故本题选C.【点睛】本题考查了斜率的计算公式,考查了数学运算能力、识记公式的能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

,,故答案为.考点:三角函数诱导公式、切割化弦思想.12、【解析】

先求出,再根据面积得到,再利用余弦定理和基本不等式得解.【详解】由题得,所以.由余弦定理得,当且仅当时取等.所以b的最小值是.故答案为:【点睛】本题主要考查余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.13、【解析】

由等差数列的性质可得出的值,然后利用等差数列的求和公式可求出的值.【详解】由等差数列的基本性质可得,因此,.故答案为:.【点睛】本题考查等差数列求和,同时也考查了等差数列基本性质的应用,考查计算能力,属于基础题.14、【解析】

先由得出,再根据即可求出与的夹角的取值范围.【详解】因为关于的方程有实数根,所以,即,设与的夹角为,所以,因为,所以,即与的夹角的取值范围是【点睛】本题主要考查平面向量的夹角公式的应用等,属基础题.15、②③【解析】

利用等比数列的性质,可得,得出,进而判断②③④,即可得到答案.【详解】①中,由等比数列的公比为,且满足,,,可得,所以,且所以是错误的;②中,由等比数列的性质,可得,所以是正确的;③中,由,且,,所以前项之积的最大值为,所以是正确的;④中,,所以正确.综上可得,正确命题的序号为②③.故答案为:②③.【点睛】本题主要考查了等比数列的性质的应用,其中解答中熟记等比数列的性质,合理推算是解答的关键,着重考查了推理与运算能力,属于中档试题.16、【解析】

根据题意,设为,设过点圆的切线为,分析可得在圆上,求出直线的斜率,分析可得直线的斜率,由直线的点斜式方程计算可得答案.【详解】根据题意,设为,设过点圆的切线为,圆的方程为,则点在圆上,则,则直线的斜率,则直线的方程为,变形可得,故答案为.【点睛】本题考查圆的切线方程,注意分析点与圆的位置关系.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由函数的一段图象求得、、和的值即可;(2)由,求得的取值范围,再利用正弦函数的性质求得的最大和最小值即可.【详解】解:(1)由函数的一段图象知,,,,解得,又时,,,,解得,;,函数的解析式为;(2)当时,,令,解得,此时取得最大值为2;令,解得,此时取得最小值为;函数的值域为.【点睛】本题考查了函数的图象和性质的应用问题,属于基础题.18、(1);(2).【解析】

(1)利用二倍角和辅助角公式可将函数整理为,利用求得结果;(2)由,结合的范围可求得;利用两角和差正弦公式和二倍角公式化简已知等式,可求得;分别在和两种情况下求解出各边长,从而求得三角形面积.【详解】(1)的最小正周期:(2)由得:,即:,,解得:,由得:即:若,即时,则:若,则由正弦定理可得:由余弦定理得:解得:综上所述,的面积为:【点睛】本题考查正弦型函数的最小正周期、三角形面积的求解,涉及到正弦定理、余弦定理、三角形面积公式、两角和差正弦公式、二倍角公式、辅助角公式的应用,考查学生对于三角函数、三角恒等变换和解三角形知识的掌握.19、(1)5≤f(-2)≤10;(2)[-2,0).【解析】

(1)用和表示,再根据不等式的性质求得.(2)对进行参变分离,根据和求得.【详解】解(1)方法一⇒∵f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,2≤f(1)≤4,∴5≤f(-2)≤10.方法二设f(-2)=mf(-1)+nf(1),即4a-2b=m(a-b)+n(a+b)=(m+n)a-(m-n)b,比较两边系数:⇒∴f(-2)=3f(-1)+f(1),下同方法一.(2)当x∈[0,1]时,-1≤f(x)≤1,即-1≤ax2+x≤1,即当x∈[0,1]时,ax2+x+1≥0且ax2+x-1≤0恒成立;当x=0时,显然,ax2+x+1≥0且ax2+x-1≤0均成立;当x∈(0,1]时,若ax2+x+1≥0恒成立,则a≥--=-(+)2+,而-(+)2+在x∈(0,1]上的最大值为-2,∴a≥-2;当x∈(0,1]时,ax2+x-1≤0恒成立,则a≤-=(-)2-,而(-)2-在x∈(0,1]上的最小值为0,∴a≤0,∴-2≤a≤0,而a≠0,因此所求a的取值范围为[-2,0).【点睛】本题考查不等式的性质和参变分离的恒成立问题,属于难度题.20、(1)(2)见解析【解析】

(1)利用和表示出和,解方程求得和;根据等差数列通项公式求得结果;(2)整理出的通项公式,利用裂项相消法可求得,根据可证得结论.【详解】(1)设数列的公差为则,解得:(2)由(1)知:,即【点睛】本题考查等差数列通项公式的求解、裂项相消法求解数列的前项和;关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论