版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福州第一中学高一下数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B. C. D.2.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.3.下列极限为1的是()A.(个9) B.C. D.4.边长为1的正方形上有一动点,则向量的范围是()A. B. C. D.5.如图,在直三棱柱中,,,,则异面直线与所成角的余弦值是()A. B. C. D.6.已知向量、的夹角为,,,则()A. B. C. D.7.已知奇函数满足,则的取值不可能是()A.2 B.4 C.6 D.108.设x,y满足约束条件,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]9.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.10.直线(是参数)被圆截得的弦长等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知单位向量与的夹角为,且,向量与的夹角为,则=.12.方程的解集是___________13.在中,,,则的值为________14.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用表示解下个圆环所需的移动最少次数,满足,且,则解下4个环所需的最少移动次数为_____.15.执行如图所示的程序框图,则输出的结果为__________.16.函数的定义域为__________;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量单位:吨,将数据按照,,分成9组,制成了如图所示的频率分布直方图.(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数说明理由;(2)估计居民月均用水量的中位数.18.设是等差数列,,且成等比数列.(1)求的通项公式;(2)记的前项和为,求的最小值.19.将函数的图像向右平移1个单位,得到函数的图像.(1)求的单调递增区间;(3)设为坐标原点,直线与函数的图像自左至右相交于点,,,求的值.20.已知函数的最小正周期是.(1)求的值及函数的单调递减区间;(2)当时,求函数的取值范围.21.锐角的内角、、所对的边分别为、、,若.(1)求;(2)若,,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先由已知条件求出扇形的半径为,再结合弧长公式求解即可.【详解】解:设扇形的半径为,由弧度数为2的圆心角所对的弦长也是2,可得,由弧长公式可得:这个圆心角所对的弧长是,故选:B.【点睛】本题考查了扇形的弧长公式,重点考查了运算能力,属基础题.2、A【解析】
根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.3、A【解析】
利用极限的运算逐项求解判断即可【详解】对于A项,极限为1,对于B项,极限不存在,对于C项,极限为1.对于D项,,故选:A.【点睛】本题考查的极限的运算及性质,准确计算是关键,是基础题4、A【解析】
分类,按在正方形的四条边上分别求解.【详解】如图,分别以为建立平面直角坐标系,,设,,∴,当在边或上时,,所以,当在边上时,,,当在边上时,,,∴的取值范围是.故选:A.【点睛】本题考查平面向量的数量积,通过建立坐标系,把向量和数量积用坐标表示,使问题简单化.5、D【解析】连结,∵,
∴是异面直线与所成角(或所成角的补角),
∵在直三棱柱中,,,,
∴,,,,
∴,
∴异面直线与所成角的余弦值为,故选D.6、B【解析】
利用平面向量数量积和定义计算出,可得出结果.【详解】向量、的夹角为,,,则.故选:B.【点睛】本题考查利用平面向量的数量积来计算平面向量的模,在计算时,一般将模进行平方,利用平面向量数量积的定义和运算律进行计算,考查计算能力,属于中等题.7、B【解析】
由三角函数的奇偶性和对称性可求得参数的值.【详解】由是奇函数得又因为得关于对称,所以,解得所以当时,得A答案;当时,得C答案;当时,得D答案;故选B.【点睛】本题考查三角函数的奇偶性和对称性,属于基础题.8、B【解析】作出约束条件表示的可行域,如图中阴影部分所示.目标函数即,易知直线在轴上的截距最大时,目标函数取得最小值;在轴上的截距最小时,目标函数取得最大值,即在点处取得最小值,为;在点处取得最大值,为.故的取值范围是[–3,2].所以选B.【名师点睛】线性规划的实质是把代数问题几何化,即运用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点处或边界上取得.9、A【解析】,,,故选A.10、D【解析】
先消参数得直线普通方程,再根据垂径定理得弦长.【详解】直线(是参数),消去参数化为普通方程:.圆心到直线的距离,∴直线被圆截得的弦长.故选D.【点睛】本题考查参数方程化普通方程以及垂径定理,考查基本分析求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为所以考点:向量数量积及夹角12、或【解析】
方程的根等价于或,分别求两个三角方程的根可得答案.【详解】方程或,所以或,所以或.故答案为:或.【点睛】本题考查三角方程的求解,求解时可利用单位圆中的三角函数线,注意终边相同角的表示,考查运算求解能力和数形结合思想的运用.13、【解析】
由,得到,由三角形的内角和,求出,再由正弦定理求出的值.【详解】因为,,所以,所以,在中,由正弦定理得,所以.【点睛】本题考查正弦定理解三角形,属于简单题.14、7【解析】
利用的通项公式,依次求出,从而得到,即可得到答案。【详解】由于表示解下个圆环所需的移动最少次数,满足,且所以,,故,所以解下4个环所需的最少移动次数为7故答案为7.【点睛】本题考查数列的递推公式,属于基础题。15、1【解析】
由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得
S=1,i=1
满足条件S<40,执行循环体,S=3,i=2
满足条件S<40,执行循环体,S=7,i=3
满足条件S<40,执行循环体,S=15,i=4
满足条件S<40,执行循环体,S=31,i=5
满足条件S<40,执行循环体,S=13,i=1
此时,不满足条件S<40,退出循环,输出i的值为1.
故答案为:1.【点睛】本题主要考查的是程序框图,属于基础题.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.16、【解析】
根据偶次被开方数大于等于零,分母不为零,列出不等式组,解出即可.【详解】依题意可得,,解得即,故函数的定义域为.故答案为:.【点睛】本题主要考查函数定义域的求法,涉及三角不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3.6万;(2)2.06.【解析】
(1)由频率分布直方图的性质,求得,利用频率分布直方图求得月均用水量不低于3吨的频率为,进而得到样本中月均用水量不低于3吨的户数;(2)根据频率分布直方图,利用中位数的定义,即可求解.【详解】(1)由频率分布直方图的性质,可得,即,解得,又由频率分布直方图可得月均用水量不低于3吨的频率为,即样本中月均用水量不低于3吨的户数为万.(2)根据频率分布直方图,得:,则,所以中位数应在组内,即,所以中位数是.【点睛】本题主要考查了频率分布直方图的性质,以及频率分布直方图中位数的求解及应用,其中解答中熟记频率分布直方图的性质和中位数的计算是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1);(2)【解析】
(1)利用等差数列通项公式和等比数列的性质,列出方程求出,由此能求出的通项公式.(2)由,,求出的表达式,然后转化求解的最小值.【详解】解:(1)是等差数列,,且,,成等比数列.,,解得,.(2)由,,得:,或时,取最小值.【点睛】本题考查数列的通项公式、前项和的最小值的求法,考查等差数列、等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.19、(1)();(2)【解析】
(1)通过“左加右减”可得到函数的解析式,从而求得的单调递增区间;(2)先求得直线与轴的交点为,则,又,关于点对称,所以,从而.【详解】(1)令,,的单调递增区间是()(2)直线与轴的交点为,即为函数的对称中心,且,关于点对称,【点睛】本题主要考查三角函数平移,增减区间的求解,对称中心的性质及向量的基本运算,意在考查学生的分析能力和计算能力.20、(1),减区间为;(2)【解析】
(1)利用倍角公式将函数化成的形式,再利用周期公式求出的值,并将代入区间,求出即可;(2)由求得,利用单位圆中的三角函数线,即可得答案.【详解】(1),,;,,的单调递减区间为.(2)由得,利用单位圆中的三角函数线可得:,∴.【点睛】本题考查三角恒等变换中倍角公式的应用、周期公式、值域求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意角度范围的限制.21、(1);(2).【解析】
(1)利用正弦定理边角互化思想,结合两角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 园林景观石材安装合同
- 新学期自律保证书范文
- 九年级化学上册 第五单元 定量研究化学反应 第一节 化学反应中的质量守恒同步教案 (新版)鲁教版
- 2024秋九年级语文上册 第二单元 写作 观点要明确教案 新人教版
- 2024-2025学年新教材高中政治 第三课 只有中国特色社会主义才能发展中国 2 中国特色社会主义的创立、发展和完善(2)教案 部编版必修1
- 2024八年级数学下册 第22章 四边形22.3三角形的中位线教案(新版)冀教版
- 2024-2025学年高中历史 第二单元 凡尔赛-华盛顿体系下的世界 第1课 巴黎和会(4)教学教案 新人教版选修3
- 2023六年级语文下册 第二单元 口语交际:同读一本书配套教案 新人教版
- 2023三年级数学上册 五 周长第3课时 长方形的周长说课稿 北师大版
- 2023七年级英语上册 Module 6 A trip to the zoo Unit 1 Does it eat meat教案 (新版)外研版
- 职业健康整改计划
- 国家职业技术技能标准 3-02-03-01 消防员(2022年版)
- GB/T 36242-2018燃气流量计体积修正仪
- GB/T 2818-2014井用潜水异步电动机
- 5 汪曾祺《跑警报》.电子教案教学课件
- 叙事疗法课件
- 国家开放大学电大《计算机应用基础(本)》终结性考试试题答案(格式已排好)任务一
- 店长交接表模板(最新)
- 阿米巴经营管理课件
- 牙列缺损的固定义齿修复课件
- 小学质量检测汇报材料范文推荐11篇
评论
0/150
提交评论