2025届山西省运城市永济涑北中学高一下数学期末学业质量监测模拟试题含解析_第1页
2025届山西省运城市永济涑北中学高一下数学期末学业质量监测模拟试题含解析_第2页
2025届山西省运城市永济涑北中学高一下数学期末学业质量监测模拟试题含解析_第3页
2025届山西省运城市永济涑北中学高一下数学期末学业质量监测模拟试题含解析_第4页
2025届山西省运城市永济涑北中学高一下数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省运城市永济涑北中学高一下数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,则“”是“函数有零点”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知数列为等比数列,且,则()A. B. C. D.3.已知圆:关于直线对称的圆为圆:,则直线的方程为A. B. C. D.4.函数的部分图像大致为A. B. C. D.5.在等比数列中,已知,那么的前4项和为().A.81 B.120 C.121 D.1926.在正项等比数列中,,数列的前项之和为()A. B. C. D.7.已知单位向量,,满足.若点在内,且,,则下列式子一定成立的是()A. B.C. D.8.在中,若,,,则()A., B.,C., D.,9.在等差数列中,,则等于()A.5 B.6 C.7 D.810.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为A.5、10、15 B.3、9、18 C.3、10、17 D.5、9、16二、填空题:本大题共6小题,每小题5分,共30分。11.实数x、y满足,则的最大值为________.12.若数列的前项和为,则该数列的通项公式为______.13.函数的最小正周期是____.14.在正方体的体对角线与棱所在直线的位置关系是______.15.已知实数,是与的等比中项,则的最小值是______.16.已知数列是等差数列,记数列的前项和为,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,点在直线上.(1)求数列的通项公式;(2)设,若数列的前项和为,求证:.18.已知直线l1:ax﹣y﹣2=0与直线l2:(3﹣2a)x+y﹣1=0(a∈R).(1)若l1与l2互相垂直,求a的值:(2)若l1与l2相交且交点在第三象限,求a的取值范围.19.如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求证:平面PEC⊥平面PCD.20.设为正项数列的前项和,且满足.(1)求的通项公式;(2)令,,若恒成立,求的取值范围.21.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分,众数,中位数;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)1:12:13:44:5

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

结合函数零点的定义,利用充分条件和必要条件的定义进行判断,即可得出答案.【详解】由题意,当时,,函数与有交点,故函数有零点;当有零点时,不一定取,只要满足都符合题意.所以“”是“函数有零点”的充分不必要条件.故答案为:A【点睛】本题主要考查了函数零点的概念,以及对数函数的图象与性质的应用,其中解答中熟记函数零点的定义,以及对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】

根据等比数列性质知:,得到答案.【详解】已知数列为等比数列故答案选A【点睛】本题考查了等比数列的性质,属于简单题.3、A【解析】

根据对称性,求得,求得圆的圆心坐标,再根据直线l为线段C1C2的垂直平分线,求得直线的斜率,即可求解,得到答案.【详解】由题意,圆的方程,可化为,根据对称性,可得:,解得:或(舍去,此时半径的平方小于0,不符合题意),此时C1(0,0),C2(-1,2),直线C1C2的斜率为:,由圆C1和圆C2关于直线l对称可知:直线l为线段C1C2的垂直平分线,所以,解得,直线l又经过线段C1C2的中点(,1),所以直线l的方程为:,化简得:,故选A【点睛】本题主要考查了圆与圆的位置关系的应用,其中解答中熟记两圆的位置关系,合理应用圆对称性是解答本题的关键,其中着重考查了推理与运算能力,属于基础题.4、C【解析】由题意知,函数为奇函数,故排除B;当时,,故排除D;当时,,故排除A.故选C.点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.5、B【解析】

根据求出公比,利用等比数列的前n项和公式即可求出.【详解】,.故选:B【点睛】本题主要考查了等比数列的通项公式,等比数列的前n项和,属于中档题.6、B【解析】

根据等比数列的性质,即可解出答案。【详解】故选B【点睛】本题考查等比数列的性质,同底对数的运算,属于基础题。7、D【解析】

设,对比得到答案.【详解】设,则故答案为D【点睛】本题考查了向量的计算,意在考查学生的计算能力.8、A【解析】

利用正弦定理列出关系式,把与代入得出与的关系式,再与已知等式联立求出即可.【详解】∵在中,,,,∴由正弦定理得:,即,联立解得:.故选:A.【点睛】本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.9、C【解析】

由数列为等差数列,当时,有,代入求解即可.【详解】解:因为数列为等差数列,又,则,又,则,故选:C.【点睛】本题考查了等差数列的性质,属基础题.10、B【解析】试题分析:高级职称应抽取;中级职称应抽取;一般职员应抽取.考点:分层抽样点评:本题主要考查分层抽样的定义与步骤.分层抽样:当总体是由差异明显的几个部分组成的,可将总体按差异分成几个部分(层),再按各部分在总体中所占比例进行抽样.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据约束条件,画出可行域,将目标函数化为斜截式,找到其在轴截距的最大值,得到答案.【详解】由约束条件,画出可行域,如图所示,化目标函数为,由图可知,当直线过点时,直线在轴上的截距最大,联立,解得,即,所以.故答案为:.【点睛】本题考查线性规划求最大值,属于简单题.12、【解析】

由,可得出,再令,可计算出,然后检验是否满足在时的表达式,由此可得出数列的通项公式.【详解】由题意可知,当时,;当时,.又不满足.因此,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但要对是否满足进行检验,考查运算求解能力,属于中等题.13、【解析】

将三角函数化简为标准形式,再利用周期公式得到答案.【详解】由于所以【点睛】本题考查了三角函数的化简,周期公式,属于简单题.14、异面直线【解析】

根据异面直线的定义,作出图形,即可求解,得到答案.【详解】如图所示,与不在同一平面内,也不相交,所以体对角线与棱是异面直线.【点睛】本题主要考查了异面直线的概念及其判定,其中熟记异面直线的定义是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.15、【解析】

通过是与的等比中项得到,利用均值不等式求得最小值.【详解】实数是与的等比中项,,解得.则,当且仅当时,即时取等号.故答案为:.【点睛】本题考查了等比中项,均值不等式,1的代换是解题的关键.16、1【解析】

由等差数列的求和公式和性质可得,代入已知式子可得.【详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:1.【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】

(1)先利用时,由求出的值,再令,由,得出,将两式相减得出数列为等比数列,得出该数列的公比,可求出;(2)利用对数的运算性质以及等差数列的求和公式得出,并将裂项为,利用裂项法求出,于此可证明出所证不等式成立.【详解】(1)由题可得.当时,,即.由题设,,两式相减得.所以是以2为首项,2为公比的等比数列,故.(2),则,所以因为,所以,即证.【点睛】本题考查利用求通项,以及裂项法求和,利用求通项的原则是,另外在利用裂项法求和时要注意裂项法求和法所适用数列通项的基本类型,熟悉裂项法求和的基本步骤,都是常考题型,属于中等题.18、(1)a,或a=1(2)a>3【解析】

(1)由题意利用两条直线互相垂直的性质,求得的值;(2)联立方程组求出两条直线的交点坐标,再根据交点在第三象限,求出的取值范围.【详解】(1)∵直线l1:ax﹣y﹣2=0与直线l2:(3﹣2a)x+y﹣1=0,l1与l2互相垂直,∴a•(3﹣2a)+(﹣1)•1=0,求得a,或a=1.(2)若l1与l2相交且交点在第三象限,联立方程组,∵l1与l2相交,故a≠3,求得方程组的解为,∴,求得a>3.【点睛】本题主要考查两条直线互相垂直的性质,求两条直线的交点坐标,属于基础题.19、(Ⅰ)见解析(Ⅱ)见解析【解析】

(Ⅰ)取PC的中点G,连结FG、EG,AF∥EG又EG⊂平面PCE,AF⊄平面PCE,AF∥平面PCE;(Ⅱ)由(Ⅰ)得EG∥AF,只需证明AF⊥面PDC,即可得到平面PEC⊥平面PCD.【详解】证明:(Ⅰ)取PC的中点G,连结FG、EG,∴FG为△CDP的中位线,FG∥CD,FG=CD.∵四边形ABCD为矩形,E为AB的中点,∴AE∥CD,AE=CD.∴FG=AE,FG∥AE,∴四边形AEGF是平行四边形,∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE,∴AF∥平面PCE;(Ⅱ)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG⊂平面PCE,∴平面PEC⊥平面PCD.【点睛】本题考查了空间线面平行、面面垂直的判定,属于中档题.20、(1)(2)【解析】

(1)代入求得,根据与的关系可求得,可知数列为等差数列,利用等差数列通项公式求得结果;验证后可得最终结果;(2)由(1)可得,采用裂项相消的方法求得,可知,从而得到的范围.【详解】(1)由题知:,……①令得:,解得:当时,……②①-②得:∴,即是以为首项,为公差的等差数列经验证满足(2)由(1)知:即【点睛】本题考查等差数列通项公式的求解、裂项相消法求和,关键是能够利用与的关系证得数列为等差数列,从而求得通项公式,属于常规题型.21、(1)0.005;(2)平均分为73,众数为65,中位数为;(3)10【解析】

(1)根据频率之和为1,直接列式计算即可;(2)平均数等于每组的中间值乘以该组频率,再求和;众数指频率最大的一组的中间值;中位数两端的小长方形面积之和均为0.5;(3)根据题意分别求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论