黑龙江省哈尔滨市第八中学2025届高一下数学期末学业水平测试模拟试题含解析_第1页
黑龙江省哈尔滨市第八中学2025届高一下数学期末学业水平测试模拟试题含解析_第2页
黑龙江省哈尔滨市第八中学2025届高一下数学期末学业水平测试模拟试题含解析_第3页
黑龙江省哈尔滨市第八中学2025届高一下数学期末学业水平测试模拟试题含解析_第4页
黑龙江省哈尔滨市第八中学2025届高一下数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市第八中学2025届高一下数学期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,点P是内(包括边界)的一动点,且(),则的最大值为()A.6 B. C. D.62.sin480°等于()A. B. C. D.3.设某曲线上一动点到点的距离与到直线的距离相等,经过点的直线与该曲线相交于,两点,且点恰为等线段的中点,则()A.6 B.10 C.12 D.144.已知点A(-1,1)和圆C:(x﹣5)2+(y﹣7)2=4,一束光线从A经x轴反射到圆C上的最短路程是A.6-2 B.8 C.4 D.105.对于空间中的两条直线,和一个平面,下列结论正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则6.已知的顶点坐标为,,,则边上的中线的长为()A. B. C. D.7.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为()A.30° B.45° C.60° D.90°8.若实数满足,则的最小值为()A.4 B.8 C.16 D.329.设为等比数列的前n项和,若,,成等差数列,则()A.,,成等差数列 B.,,成等比数列C.,,成等差数列 D.,,成等比数列10.如图,在坡度一定的山坡处测得山顶上一建筑物的顶端对于山坡的斜度为,向山顶前进100米到达后,又测得对于山坡的斜度为,若米,山坡对于地平面的坡角为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数且的图象恒过定点A,若点A在直线上(其中m,n>0),则的最小值等于__________.12.已知,则________.13.在中,若,则等于__________.14.已知双曲线:的右顶点为,以为圆心,为半径作圆,圆与双曲线的一条渐近线于交、两点,若,则的离心率为__________.15.当时,的最大值为__________.16.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知点与两个定点,的距离之比为.(1)求点的坐标所满足的关系式;(2)求面积的最大值;(3)若恒成立,求实数的取值范围.18.求经过直线的交点,且满足下列条件的直线方程:(1)与直线平行;(2)与直线垂直.19.某学校为了了解高三文科学生第一学期数学的复习效果.从高三第一学期期末考试成绩中随机抽取50名文科考生的数学成绩,分成6组制成如图所示的频率分布直方图.(1)试利用此频率分布直方图求的值及这50名同学数学成绩的平均数的估计值;(2)该学校为制定下阶段的复习计划,从被抽取的成绩在的同学中选出3位作为代表进行座谈,若已知被抽取的成绩在的同学中男女比例为,求至少有一名女生参加座谈的概率.20.已知关于,的方程:表示圆.(Ⅰ)求的取值范围;(Ⅱ)若,过点作的切线,求切线方程.21.如图,在直三棱柱中,,,,点N为AB中点,点M在边AB上.(1)当点M为AB中点时,求证:平面;(2)试确定点M的位置,使得平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用余弦定理和勾股定理可证得;取,作,根据平面向量平行四边形法则可知点轨迹为线段,由此可确定,利用勾股定理可求得结果.【详解】由余弦定理得:如图,取,作,交于在内(包含边界)点轨迹为线段当与重合时,最大,即故选:【点睛】本题考查向量模长最值的求解问题,涉及到余弦定理解三角形的应用;解题关键是能够根据平面向量线性运算确定动点轨迹,根据轨迹确定最值点.2、D【解析】试题分析:因为,所以选D.考点:诱导公式,特殊角的三角函数值.3、B【解析】由曲线上一动点到点的距离与到直线的距离相等知该曲线为抛物线,其方程为,分别过点向抛物线的准线作垂线,垂足分别为,由梯形的中位线定理知,所以,故选B.4、B【解析】

点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,光线从点A经x轴反射到圆周C的路程最短,最短为|BC|﹣R.【详解】由反射定律得点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,最短距离为|BC|﹣R=﹣2=10﹣2=1,故光线从点A经x轴反射到圆周C的最短路程为1.故选B.【点睛】本题考查光线的反射定律的应用,以及两点间的距离公式的应用.5、C【解析】

依次分析每个选项中两条直线与平面的位置关系,确定两条直线的位置关系即可.【详解】平行于同一平面的两条直线不一定相互平行,故选项A错误,平行于平面的直线不一定与该平面内的直线平行,故选项B错误,垂直于平面的直线,垂直于与该平面平行的所有线,故选项C正确,垂直于同一平面的两条直线相互平行,故选项D错误.故选:C.【点睛】本题考查了直线与平面位置关系的辨析,属于基础题.6、D【解析】

利用中点坐标公式求得,再利用两点间距离公式求得结果.【详解】由,可得中点又本题正确选项:【点睛】本题考查两点间距离公式的应用,关键是能够利用中点坐标公式求得中点坐标.7、A【解析】

先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【详解】解:先画出图形,将平移到,为直线与所成的角,设正方体的边长为,,,,,,故选:.【点睛】本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.8、B【解析】

由可以得到,利用基本不等式可求最小值.【详解】因为,故,因为,故,故,当且仅当时等号成立,故的最小值为8,故选B.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.9、A【解析】

先说明不符合题意,由时,成等差数列,算得,然后用表示出来,即可得到本题答案.【详解】设等比数列的公比为q,首项为,当时,有,不满足成等差数列;当时,因为成等差数列,所以,即,化简得,解得,所以,,,则成等差数列.故选:A【点睛】本题主要考查等差数列与等比数列的综合应用,计算出等比数列的公比是关键,考查计算能力,属于中等题.10、C【解析】

先在中利用正弦定理求出BC的值,再在中由正弦定理解出,再计算.【详解】在中,,在中,,又∵,∴.故选C.【点睛】本题考查解三角形在实际中的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由题意可得定点,,把要求的式子化为,利用基本不等式求得结果.【详解】解:且令解得,则即函数过定点,又点在直线上,,则,当且仅当时,等号成立,故答案为:1.【点睛】本题考查基本不等式的应用,函数图象过定点问题,把要求的式子化为,是解题的关键,属于基础题.12、【解析】

利用向量内积的坐标运算以及向量模的坐标表示,准确运算,即可求解.【详解】由题意,向量,则,,所以.故答案为【点睛】本题主要考查了向量内积的坐标运算,以及向量模的坐标运算的应用,其中解答中熟记向量的数量积的运算公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.13、;【解析】

由条件利用三角形内角和公式求得,再利用正弦定理即可求解.【详解】在中,,,,即,,故答案为:【点睛】本题考查了正弦定理解三角形,需熟记定理的内容,属于基础题.14、【解析】如图所示,由题意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.设双曲线C的一条渐近线y=x的倾斜角为θ,则tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,再根据和转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).15、-3.【解析】

将函数的表达式改写为:利用均值不等式得到答案.【详解】当时,故答案为-3【点睛】本题考查了均值不等式,利用一正二定三相等将函数变形是解题的关键.16、②④【解析】

①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【点睛】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)3;(3)【解析】

(1)根据题意,结合两点间距离公式,可以得到等式,化简后得到点的坐标所满足的关系式;(2)设是曲线上任一点,求出的表达式,结合的取值范围,可以求出面积的最大值;(3)恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,利用点到直线距离公式,可以求出取得最大和最小值,最后可以求出实数的取值范围.【详解】(1)设的坐标是,由,得,化简得.(2)由(1)得,点在以为圆心,为半径的圆上.设是曲线上任一点,则,又,故的最大值为:.(3)由(1)得:圆的方程是若恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,由得:,,故当时,原不等式恒成立.【点睛】本题考查了求点的轨迹方程,考查了直线与圆的位置关系,考查了求三角形面积最大值问题,考查了数学运算能力.18、(1);(2).【解析】

(1)先求出,再设所求的直线为,代入求出后可得所求的直线方程.(2)设所求的直线为,代入求出后可得所求的直线方程.【详解】(1)由题意知:联立方程组,解得交点,因为所求直线与直线平行,故设所求直线的方程为,代入,解得,即所求直线方程为(2)设与垂直的直线方程为因为过点,代入得,故所求直线方程为【点睛】本题考查直线方程的求法,注意根据平行或垂直关系合理假设直线方程,本题属于容易题.19、(1);平均数的估计值(2)【解析】

(1)根据各小矩形面积和为1可求得的值;由频率分布直方图,结合平均数的求法即可求解.(2)根据频率分布直方图先求得成绩在的同学人数,结合分层抽样可得男生4人,女生2人,设男生分别为;女生分别为,利用列举法可得抽取3人的所有情况,进而得至少有一名女生的情况,即可由古典概型概率公式求解.【详解】(1)由题,解得,由频率分布直方图,得这50名同学数学成绩的平均数的估计值为:(2)由频率分布直方图知,成绩在的同学有人,由比例可知男生4人,女生2人,记男生分别为;女生分别为,则从6名同学中选出3人的所有可能如下:共20种,其中不含女生的有4种,设至少有一名女生参加座谈为事件,则至少有一名女生参加座谈的概率.【点睛】本题考查了频率分布直方图的性质及平均数求法,分层抽样及各组人数的确定方法,列举法求古典概型的概率,属于基础题.20、(Ⅰ);(Ⅱ)或.【解析】

(Ⅰ)根据圆的一般方程表示圆的条件,可得关于的不等式,即可求得的取值范围.(Ⅱ)将代入,可得圆的方程,化为标准方程.讨论斜率是否存在两种情况.当斜率不存在时,可直接求得直线方程;当斜率存在时,由点斜式设出直线方程,结合点到直线的距离即可求得斜率,即可得直线方程.【详解】(Ⅰ)若方程表示圆则解得故实数的取值范围为(Ⅱ)若,圆:①当过点的直线斜率不存在时,直线方程为圆心到直线的距离等于半径,此时直线与相切②当过点的直线斜率存在时,不妨设斜率为则切线方程为,即由圆心到直线的距离等于半径可知,解得,即切线方程为综上所述,切线方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论