版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市城关区第一中学2025届高一下数学期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列的前n项和为,若,,,则()A. B. C. D.2.执行如图所示的程序框图,若输入,则输出()A.5 B.8 C.13 D.213.已知一组正数的平均数为,方差为,则的平均数与方差分别为()A. B. C. D.4.已知,且,则()A. B. C. D.25.已知数列满足,为其前项和,则不等式的的最大值为()A.7 B.8 C.9 D.106.为三角形ABC的一个内角,若,则这个三角形的形状为()A.锐角三角形 B.钝角三角形C.等腰直角三角形 D.等腰三角形7.已知,是两个变量,下列四个散点图中,,虽负相关趋势的是()A. B.C. D.8.已知向量a=(2,1),a⋅b=10,A.5 B.10 C.5 D.259.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.10.在等差数列中,若,则的值为()A.15 B.21 C.24 D.18二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图像可由函数的图像至少向右平移________个单位长度得到.12.在正四面体中,棱与所成角大小为________.13.已知角的终边经过点,若,则______.14.102,238的最大公约数是________.15.已知向量,,且,则______.16.若函数,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l经过点,并且其倾斜角等于直线的倾斜角的2倍.求直线l的方程.18.已知数列为等差数列,且满足,,数列的前项和为,且,.(Ⅰ)求数列,的通项公式;(Ⅱ)若对任意的,不等式恒成立,求实数的取值范围.19.在中,,,的对边分别为,,,已知.(1)判断的形状;(2)若,,求.20.设的内角为所对的边分别为,且.(1)求角的大小;(2)若,求的周长的取值范围.21.已知数列是以为首项,为公比的等比数列,(1)求数列的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据等比数列前n项和的性质可知、、成等比数列,即可得关于的等式,化简即可得解.【详解】等比数列的前n项和为,若,,根据等比数列前n项和性质可知,、、满足:化简可得故选:D【点睛】本题考查了等比数列前n项和的性质及简单应用,属于基础题.2、C【解析】
通过程序一步步分析得到结果,从而得到输出结果.【详解】开始:,执行程序:;;;;,执行“否”,输出的值为13,故选C.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.3、C【解析】
根据平均数的性质和方差的性质即可得到结果.【详解】根据平均数的线性性质,以及方差的性质:将一组数据每个数扩大2倍,且加1,则平均数也是同样的变化,方差变为原来的4倍,故变换后数据的平均数为:;方差为4.故选:C.【点睛】本题考查平均数和方差的性质,属基础题.4、A【解析】
由平方关系得出的值,最后由商数关系求解即可.【详解】,故选:A【点睛】本题主要考查了利用平方关系以及商数关系化简求值,属于基础题.5、B【解析】
由题意,整理得出是一个首项为12,公比为的等比数列,从而求出,再求出其前项和,然后再求出的表达式,再代入数验证出的最大值即可.【详解】由可得,即,所以数列是等比数列,又,所以,故,解得,(),所以的最大值为8.选B.【点睛】本题考查数列的递推式以及数列求和的方法分组求和,属于数列中的综合题,考查了转化的思想,构造的意识,本题难度较大,思维能力要求高.6、B【解析】试题分析:由,两边平方得,即,又,则,所以为第三、四象限角或轴负半轴上的角,所以为钝角.故正确答案为B.考点:1.三角函数的符号、平方关系;2.三角形内角.7、C【解析】由图可知C选项中的散点图描述了随着的增加而减小的变化趋势,故选C8、C【解析】
将|a+b9、A【解析】
利用,求出,再利用,求出即可【详解】,,,则有,代入得,则有,,,又,故答案选A【点睛】本题考查三角函数的图像问题,依次求出和即可,属于简单题10、D【解析】
利用等差数列的性质,将等式全部化为的形式,再计算。【详解】因为,且,则,所以.故选D【点睛】本题考查等差数列的性质,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为,所以函数的的图像可由函数的图像至少向右平移个单位长度得到.【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.12、【解析】
根据正四面体的结构特征,取中点,连,,利用线面垂直的判定证得平面,进而得到,即可得到答案.【详解】如图所示,取中点,连,,正四面体是四个全等正三角形围成的空间封闭图形,所有棱长都相等,所以,,且,所以平面,又由平面,所以,所以棱与所成角为.【点睛】本题主要考查了异面直线所成角的求解,以及直线与平面垂直的判定及应用,着重考查了推理与论证能力,属于基础题.13、【解析】
利用三角函数的定义可求.【详解】由三角函数的定义可得,故.故答案为:.【点睛】本题考查三角函数的定义,注意根据正弦的定义构建关于的方程,本题属于基础题.14、34【解析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.15、【解析】
根据的坐标表示,即可得出,解出即可.【详解】,,.【点睛】本题主要考查平行向量的坐标关系应用.16、【解析】
根据分段函数的解析式先求,再求即可.【详解】因为,所以.【点睛】本题主要考查了分段函数求值问题,解题的关键是将自变量代入相应范围的解析式中,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
求出直线的倾斜角,可得所求直线的倾斜角,从而可得斜率,再利用点斜式可得结果.【详解】因为直线的斜率为,所以其倾斜角为30°,所以,所求直线的倾斜角为60°故所求直线的斜率为,又所求直线经过点,所以其方程为,即,故答案为:.【点睛】本题主要考查直线的斜率与倾斜角,考查了直线点斜式方程的应用,意在考查对基础知识的掌握情况,属于基础题.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)数列的通项公式,利用,可求公差,然后可求;的通项公式可以利用退位相减法求解;(Ⅱ)求出代入,利用分离参数法可求实数的取值范围.【详解】解:(Ⅰ)∵,∴,∴,即,∵,∴,∴,∴,又,也成立,∴是以1为首项,3为公比的等比数列,∴.(Ⅱ),∴对恒成立,即对恒成立,令,,当时,,当时,,∴,故,即的取值范围为.【点睛】本题主要考查数列通项公式的求解和参数范围的确定,熟练掌握公式是求解关键,侧重考查数学运算的核心素养.19、(1)为直角三角形或等腰三角形(2)【解析】
(1)由正弦定理和题设条件,得,再利用三角恒等变换的公式,化简得,进而求得或,即可得到答案.(2)在中,利用余弦定理,求得,即可求得的值.【详解】(1)由正弦定理可知,代入,,又由,所以,所以,所以,则,则或,所以或,所以为直角三角形或等腰三角形.(2)因为,则为等腰三角形,从而,由余弦定理,得,所以.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.20、(1);(2).【解析】试题分析:(1)已知,由余弦定理角化边得,再由余弦定理可得角的值;(2)根据与,由正弦定理求得,,结合代入到的周长表达式,利用三角恒等变换化简得到的周长关于角的三角函数,再根据正弦函数的图象与性质,即可求解周长的取值范围.试题解析:(1),由余弦定理,得,,∵.(2).由正弦定理,得,同理可得,的周长,,的周长,故的周长的取值范围为.点睛:在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《模具制造工艺学》教学大纲
- 教案装订顺序
- 四个自信课件
- 玉溪师范学院《现代教育技术》2022-2023学年第一学期期末试卷
- 玉溪师范学院《田径》2021-2022学年第一学期期末试卷
- 教练员继续教育考试题目及答案-知识题库
- 湖南师大附中2024-25届高三年级月考试卷(二)(英语)
- 电商公司整体薪酬设计(早期)
- 《信号基础设备》全套教学课件
- 2023年双频、双模移动通信手机项目综合评估报告
- 精准医疗与个体化治疗
- 鸡尾酒种类大全
- 职业技术学院计算机应用技术专业教学标准
- (高清版)JTG 2112-2021 城镇化地区公路工程技术标准
- 中国新能源汽车安全发展报告-2023-03-新能源
- PE100管施工方案水平定向钻
- 实验室试剂管理培训
- 超星尔雅学习通《中国近现代史纲要(首都师范大学)》2024章节测试答案
- 新部编版九年级语文下册《词四首》导学案
- (2024年)小学体育多媒体课件
- 物资设备盘点报告(模版)
评论
0/150
提交评论