版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西延安市实验中学大学区校际联盟2025届数学高一下期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知与之间的一组数据如表,若与的线性回归方程为,则的值为A.1 B.2 C.3 D.42.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么互斥而不对立的两个事件是()A.至少有1名男生和至少有1名女生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.恰有1名男生和恰有2名男生3.问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②Ⅱ B.①Ⅲ,②Ⅰ C.①Ⅱ,②Ⅲ D.①Ⅲ,②Ⅱ4.如图是一名篮球运动员在最近6场比赛中所得分数的茎叶图,则下列关于该运动员所得分数的说法错误的是()A.中位数为14 B.众数为13 C.平均数为15 D.方差为195.在中,,则等于()A. B. C. D.6.在正方体中,当点在线段(与,不重合)上运动时,总有:①;②平面平面;③平面;④.以上四个推断中正确的是()A.①② B.①④ C.②④ D.③④7.函数的定义域是().A. B. C. D.8.已知两条平行直线和之间的距离等于,则实数的值为()A. B. C.或 D.9.若向量满足:与的夹角为,且,则的最小值是()A.1 B. C. D.210.设是两条不同的直线,是两个不同的平面,则下列命题不正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角、、所对应边分别为、、,,的平分线交于点,且,则的最小值为______12.设扇形的半径长为,面积为,则扇形的圆心角的弧度数是13.数列的前项和为,若数列的各项按如下规律排列:,,,,,,,,,,…,,,…,,…有如下运算和结论:①;②数列,,,,…是等比数列;③数列,,,,…的前项和为;④若存在正整数,使,,则.其中正确的结论是_____.(将你认为正确的结论序号都填上)14.对于下列数排成的数阵:它的第10行所有数的和为________15.某公司租地建仓库,每月土地占用费(万元)与仓库到车站的距离(公里)成反比.而每月库存货物的运费(万元)与仓库到车站的距离(公里)成正比.如果在距车站公里处建仓库,这两项费用和分别为万元和万元,由于地理位置原因.仓库距离车站不超过公里.那么要使这两项费用之和最小,最少的费用为_____万元.16.若关于x的不等式的解集是,则_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在一次人才招聘会上,有A、B两家公司分别开出了它们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年的月工资增加基础上递增5%,设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作年,则他在第年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其它因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元(精确到1元),并说明理由.18.已知,,且与的夹角为.(1)求在上的投影;(2)求.19.已知函数,且,.(1)求,的值及的定义域;(2)若存在,使得成立,求实数的取值范围.20.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设年内(本年度为第一年)总投入为万元,旅游业总收入为万元,写出的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?21.已知圆经过点,且圆心在直线:上.(1)求圆的方程;(2)过点的直线与圆交于两点,问在直线上是否存在定点,使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先求出样本中心点,代入回归直线方程,即可求得的值,得到答案.【详解】由题意,根据表中的数据,可得,又由回归直线方程过样本中心点,所以,解得,故选D.【点睛】本题主要考查了线性回归直线方程的应用,其中解答中熟记线性回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解析】试题分析:A中两事件不是互斥事件;B中不是互斥事件;C中两事件既是互斥事件又是对立事件;D中两事件是互斥但不对立事件考点:互斥事件与对立事件3、B【解析】解:(1)中由于小区中各个家庭收入水平之间存在明显差别故(1)要采用分层抽样的方法(2)中由于总体数目不多,而样本容量不大故(2)要采用简单随机抽样故问题和方法配对正确的是:(1)Ⅲ(2)Ⅰ.故选B.4、D【解析】从题设中所提供的茎叶图可知六个数分别是,所以其中位数是,众数是,平均数,方差是,应选答案D.5、D【解析】
先根据向量的夹角公式计算出的值,然后再根据同角的三角函数的基本关系即可求解出的值.【详解】因为,所以,所以,所以.故选:D.【点睛】本题考查坐标形式下向量的夹角计算,难度较易.注意:的夹角并不是,而应是的补角.6、D【解析】
每个结论可以通过是否能证伪排除即可.【详解】①因为,与相交,所以①错.②很明显不对,只有当E在中点时才满足条件.③易得平面平面,而AE平面,所以平面;④因为平面,而AE平面,所以.故选D【点睛】此题考查空间图像位置关系,一般通过特殊位置排除即可,属于较易题目.7、C【解析】函数的定义域即让原函数有意义即可;原式中有对数,则故得到定义域为.故选C.8、C【解析】
利用两条平行线之间的距离公式可求的值.【详解】两条平行线之间的距离为,故或,故选C.【点睛】一般地,平行线和之间的距离为,应用该公式时注意前面的系数要相等.9、D【解析】
设作图,由可知点在以线段为直径的圆上,由图可知,,代入所求不等式利用圆的特征化简即可.【详解】如图,设,取线段的中点为,连接OE交圆于点D,因为即,所以点在以线段为直径的圆上(E为圆心),且,于是.故选:D【点睛】本题考查向量的线性运算,垂直向量的数量积表示,几何图形在向量运算中的应用,属于中档题.10、D【解析】
对于A,利用线面平行的判定可得A正确.对于B,利用线面垂直的性质可得B正确.对于C,利用面面垂直的判定可得C正确.根据平面与平面的位置关系即可判断D不正确.【详解】对于A,根据平面外的一条直线与平面内的一条直线平行,则这条直线平行于这个平面,可判定A正确.对于B,根据垂直于同一个平面的两条直线平行,判定B正确.对于C,根据一个平面过另一个平面的垂线,则这两个平面垂直,可判定C正确.对于D,若,则或相交,所以D不正确.故选:D【点睛】本题主要考查了线面平行和面面垂直的判定,同时考查了线面垂直的性质,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、18【解析】
根据三角形面积公式找到的关系,结合基本不等式即可求得最小值.【详解】根据题意,,因为的平分线交于点,且,所以而所以,化简得则当且仅当,即,时取等号,即最小值为.故答案为:【点睛】本题考查三角形面积公式和基本不等式,考查计算能力,属于中等题型12、2【解析】试题分析:设扇形圆心角的弧度数为α,则扇形面积为S=αr2=α×22=4解得:α=2考点:扇形面积公式.13、①③④【解析】
根据题中所给的条件,将数列的项逐个写出,可以求得,将数列的各项求出,可以发现其为等差数列,故不是等比数列,利用求和公式求得结果,结合条件,去挖掘条件,最后得到正确的结果.【详解】对于①,前24项构成的数列是,所以,故①正确;对于②,数列是,可知其为等差数列,不是等比数列,故②不正确;对于③,由上边结论可知是以为首项,以为公比的等比数列,所以有,故③正确;对于④,由③知,即,解得,且,故④正确;故答案是①③④.【点睛】该题考查的是有关数列的性质以及对应量的运算,解题的思想是观察数列的通项公式,理解项与和的关系,认真分析,仔细求解,从而求得结果.14、【解析】
由题意得第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,再根据奇数为负数,偶数为正数,得到第10行的各个数,由此能求出第10行所有数的和.【详解】第1行1个数,第2行2个数,则第9行9个数,故第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,且奇数为负数,偶数为正数,故第10行所有数的和为,故答案为:.【点睛】本题以数阵为背景,观察数列中项的特点,求数列通项和前项和,考查逻辑推理能力和运算求解能力,求解时要注意等差数列性质的合理运用.15、8.2【解析】
设仓库与车站距离为公里,可得出、关于的函数关系式,然后利用双勾函数的单调性求出的最小值.【详解】设仓库与车站距离为公里,由已知,.费用之和,求中,由双勾函数的单调性可知,函数在区间上单调递减,所以,当时,取得最小值万元,故答案为:.【点睛】本题考查利用双勾函数求最值,解题的关键就是根据题意建立函数关系式,再利用基本不等式求最值时,若等号取不到时,可利用相应的双勾函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.16、-14【解析】
由不等式的解集求出对应方程的实数根,利用根与系数的关系求出的值,从而可得结果.【详解】不等式的解集是,所以对应方程的实数根为和,且,由根与系数的关系得,解得,,故答案为.【点睛】本题主要考查一元二次不等式的解集与一元二次不等式的根之间的关系,以及韦达定理的应用,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在A公司第年收入为;在B公司连续工作年收入为;(2)应选择A公司,理由见详解;(3)827;理由见详解.【解析】
(1)先分别记该人在A公司第年收入为,在B公司连续工作年收入为,根据题中条件,即可直接得出结果;(2)根据等差数列与等比数列的求和公式,分别计算前的和,即可得出结果;(3)先令,将原问题转化为求的最大值,进而可求出结果.【详解】(1)记该人在A公司第年收入为,在B公司连续工作年收入为,由题意可得:,,,;(2)由(1),当时,该人在A公司工资收入的总量为:(元);该人在B公司工资收入的总量为:(元)显然A公司工资总量高,所以应选择A公司;(3)令,则原问题即等价于求的最大值;当时,,若,则,即,解得;又,所以,因此,当时,;当时,.所以是数列的最大项,(元),即在A公司工作比在B公司工作的月工资收入最多可以多元.【点睛】本题主要考查数列的应用,熟记等差数列与等比数列的通项公式与求和公式即可,属于常考题型.18、(1)-2.(2).【解析】分析:(1)根据题中所给的条件,利用向量的数量积的定义式,求得,之后应用投影公式,在上的投影为,求得结果;(2)应用向量模的平方等于向量的平方,之后应用公式求得结果.详解:(1)在上的投影为(2)因为,,且与的夹角为所以所以点睛:该题考查的是有关向量的投影以及向量模的计算问题,在解题的过程中,涉及到的知识点有向量的数量积的定义式,投影公式,向量模的平方和向量的平方是相等的,灵活运用公式求得结果.19、(1),,定义域;(2)【解析】
(1)由已知得,可求出、,由对数函数的定义域可得,求出的范围,即可得到的定义域;(2)设,可得,由复合函数单调性,可得在上的单调性,从而可得时,的最大值,令,解不等式即可得到答案.【详解】(1)由已知得,即,解得,,由得,所以,即,所以定义域为.(2),设,由时,可得,因为在上单调递增,所以可得在上单调递增,故当时,的最大值为,由题意,,即,即,因为,所以,即.故时,存在,使得成立.【点睛】本题考查对数函数的性质,考查复合函数单调性,考查存在性问题,考查学生的计算能力与推理能力,属于中档题.20、(1),;(2)至少经过5年,旅游业的总收入才能超过总投入.【解析】
(1)利用等比数列求和公式可求出n年内的旅游业总收入与n年内的总投入;(2)设至少经过年旅游业的总收入才能超过总投入,可得->0,结合(1)可得,解得,进而可得结果.【详解】(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n年投入为800×(1-)n-1万元,所以,n年内的总投入为=800+800×(1-)+…+800×(1-)n-1==4000×[1-()n]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n年旅游业收入400×(1+)n-1万元.所以,n年内的旅游业总收入为=400+400×(1+)+…+400×(1+)n-1==1600×[()n-1](2)设至少经过n年旅游业的总收入才能超过总投入,由此->0,即:1600×[()n-1]-4000×[1-()n]>0,令x=()n,代入上式得:5x2-7x+2>0.解此不等式,得x<,或x>1(舍去).即()n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年钢材运输合同模板
- 三方供货协议范本2024年
- 个人购房担保借款合同一式几份2024年
- 2024年银行证券指定交易协议书范本
- 2024年赞助的合同范本
- 2024年屋面防水合同协议
- 2024年房地产营销承包合同
- 2024年一般货物出口合同范本格式(附英文)
- 2024年马铃薯生产购销合同范本
- 2024年厦门市城市房屋拆迁补偿安置协议书私(侨)房(含非住宅)
- 民航安全实训报告
- 中职语文文学常识专题试题
- 混凝烧杯搅拌实验讲义一
- 光伏逆变器安装施工方案
- 心理健康-第五讲-自我认识与自我接纳
- 周志华-机器学习-Chap01绪论-课件
- 孙子兵法中的思维智慧2065203 知到智慧树网课答案
- 劳动课学期教学计划
- 辽宁省沈阳市铁西区2023-2024学年七年级下学期期中考试地理试卷+
- 小学校园反恐防暴安全
- 2023体育知识竞赛题库及参考答案
评论
0/150
提交评论