![四川省成都航天中学2025届高一下数学期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view3/M02/2B/31/wKhkFmZ0hoaAT-PVAAJXsa0Gpjo356.jpg)
![四川省成都航天中学2025届高一下数学期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view3/M02/2B/31/wKhkFmZ0hoaAT-PVAAJXsa0Gpjo3562.jpg)
![四川省成都航天中学2025届高一下数学期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view3/M02/2B/31/wKhkFmZ0hoaAT-PVAAJXsa0Gpjo3563.jpg)
![四川省成都航天中学2025届高一下数学期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view3/M02/2B/31/wKhkFmZ0hoaAT-PVAAJXsa0Gpjo3564.jpg)
![四川省成都航天中学2025届高一下数学期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view3/M02/2B/31/wKhkFmZ0hoaAT-PVAAJXsa0Gpjo3565.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省成都航天中学2025届高一下数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等比数列中,,则等于是()A. B.4 C. D.2.已知变量,满足约束条件则取最大值为()A. B. C.1 D.23.设首项为,公比为的等比数列的前项和为,则()A. B. C. D.4.已知为角终边上一点,且,则()A. B. C. D.5.已知集合,则()A. B. C. D.6.已知函数,点A、B分别为图象在y轴右侧的第一个最高点和第一个最低点,O为坐标原点,若△OAB为锐角三角形,则的取值范围为()A. B. C. D.7.在平面直角坐标系中,已知四边形是平行四边形,,,则()A. B. C. D.8.已知扇形的面积为,半径为,则扇形的圆心角的弧度数为A. B. C. D.9.己知关于的不等式解集为,则突数的取值范围为()A. B.C. D.10.函数()的部分图象如图所示,其中是图象的最高点,是图象与轴的交点,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线的交点为,则________.12.已知数列满足且,则____________.13.设向量满足,,,.若,则的最大值是________.14.已知P1(x1,y1),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若,则x1x2+y1y2的值为_____.15.已知中,内角A,B,C的对边分别为a,b,c,,,则的面积为______;16.已知函数fx=Asin三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为锐角三角形,内角A,B,C的对边分别为a,b,c,若.(1)求C;(2)若,且的面积为,求的周长.18.若关于的不等式对一切实数都成立,求实数的取值范围.19.某校名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是,,,,,.求图中的值;根据频率分布直方图,估计这名学生的平均分;若这名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如表所示,求英语成绩在的人数.分数段:51:21:120.设数列的前项和为,满足,且,数列满足,对任意的,且成等比数列,其中.(1)求数列的通项公式(2)记,证明:当且时,21.已知数列的前项和为,满足且,数列的前项为,满足(Ⅰ)设,求证:数列为等比数列;(Ⅱ)求的通项公式;(Ⅲ)若对任意的恒成立,求实数的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用等比数列通项公式直接求解即可.【详解】因为是等比数列,所以.故选:B【点睛】本题考查了等比数列通项公式的应用,属于基础题.2、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,当,即点,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,有最大值为.故选:C.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.3、D【解析】Sn====3-2an.4、B【解析】
由可得,借助三角函数定义可得m值与.【详解】∵∴,解得又为角终边上一点,∴,∴∴故选B【点睛】本题主要考查任意角的三角函数的定义,两角和正切公式,属于基础题.5、A【解析】
由,得,然后根据集合的交集运算,即可得到本题答案.【详解】因为,所以.故选:A【点睛】本题主要考查集合的交集运算及对数不等式.6、B【解析】
△OAB为锐角三角形等价于,再运算即可得解.【详解】解:由题意可得,,由△OAB为锐角三角形,则,即,解得:,即的取值范围为,故选:B.【点睛】本题考查了三角函数图像的性质,重点考查了向量数量积的运算,属中档题.7、D【解析】因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.8、A【解析】
设半径为,圆心角为,根据扇形面积公式,结合题中数据,即可求出结果.【详解】设半径为,圆心角为,则对应扇形面积,又,,则故选A.【点睛】本题主要考查由扇形面积求圆心角的问题,熟记扇形面积公式即可,属于常考题型.9、C【解析】
利用绝对值的几何意义求解,即表示数轴上与和-2的距离之和,其最小值为.【详解】∵,∴由解集为,得,解得.故选C.【点睛】本题考查绝对值不等式,考查绝对值的性质,解题时可按绝对值定义去绝对值符号后再求解,也可应用绝对值的几何意义求解.不等式解集为,可转化为的最小值不小于1,这是解题关键.10、D【解析】函数的周期为,四分之一周期为,而函数的最大值为,故,由余弦定理得,故.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
(2,2)为直线和直线的交点,即点(2,2)在两条直线上,分别代入直线方程,即可求出a,b的值,进而得a+b的值。【详解】因为直线与直线的交点为,所以,,即,,故.【点睛】本题考查求直线方程中的参数,属于基础题。12、【解析】
由题得为等差数列,得,则可求【详解】由题:为等差数列且首项为2,则,所以.故答案为:2550【点睛】本题考查等差数列的定义,准确计算是关键,是基础题13、【解析】
令,计算出模的最大值即可,当与同向时的模最大.【详解】令,则,因为,所以当,,因此当与同向时的模最大,【点睛】本题主要考查了向量模的计算,以及二次函数在给定区间上的最值.整体换元的思想,属于较的难题,在解二次函数的问题时往往结合图像、开口、对称轴等进行分析.14、-【解析】
先利用平面向量数量积的定义和坐标运算得到,再利用两角和的正弦公式和平方关系进行求解.【详解】根据题意知,又P1,P2在单位圆上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ为钝角,联立①②求得cosθ=-.【点睛】本题主要考查平面向量的数量积定义和坐标运算、两角和的正弦公式,意在考查学生的逻辑思维能力和基本运算能力,属于中档题.15、【解析】
先根据以及余弦定理计算出的值,再由面积公式即可求解出的面积.【详解】因为,所以,所以,所以.故答案为:.【点睛】本题考查解三角形中利用余弦定理求角以及面积公式的运用,难度较易.三角形中,已知两边的乘积和第三边所对的角即可利用面积公式求解出三角形面积.16、f【解析】分析:首先根据函数图象得函数的最大值为2,得到A=2,然后算出函数的周期T=π,利用周期的公式,得到ω=2,最后将点(5π代入,得:2=2sin(2×5π12+φ所以fx的解析式是f详解:根据函数图象得函数的最大值为2,得A=2,又∵函数的周期34T=5π将点(5π12,2)代入,得:2=2sin所以fx的解析式是f点睛:本题给出了函数y=Asin(ωx+φ)的部分图象,要确定其解析式,着重考查了三角函数基本概念和函数y=Asin(ωx+φ)的图象与性质的知识点,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据正弦定理可求,利用特殊角三角函数可求C;(2)由和的面积公式,可求,再根据余弦定理求得解出a,b即可求的周长.【详解】(1)因为,所以由正弦定理得,又所以,又为锐角三角形,所以.(2)因为,所以由面积公式得,.又因为,所以由余弦定理得,,所以,或,,故的周长为.【点睛】本题考查正弦定理、余弦定理的应用,三角形面积公式在解三角形中的应用,属于基础题.18、【解析】
对二次项系数分成等于0和不等于0两种情况进行讨论,对时,利用二次函数的图象进行分析求解.【详解】当时,不等式对一切实数都成立,所以成立;当时,由题意得解得:;综上所述:.【点睛】本题考查不等式恒成立问题,注意运用分类讨论思想进行求解,同时也要结合二次函数的图象进行问题分析与求解.19、(1)(2)平均数为(3)人【解析】
(1)根据面积之和为1列等式解得.(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,(3)先计算出各分数段上的成绩,再根据比值计算出相应分数段上的英语成绩人数相加即可.【详解】解:由,解得.频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即估计平均数为.由频率分布直方图可求出这名学生的数学成绩在,,的分别有人,人,人,按照表中给的比例,则英语成绩在,,的分别有人,人,人,所以英语成绩在的有人.【点睛】本题考查了频率分布直方图,属中档题.20、(1).;.(2)证明见解析.【解析】
(1)当时,由,两式相减得,用等差中项确定是等差数列再求通项公式.令,根据成等比数列,求得,从而得到(2)由(1)知根据证明的结构使用放缩法,得到,再相消法求和.【详解】(1)当时,由,得,两式相减得,当时,,所以是等差数列.又因为,所以,所以,所以..令,因为成等比数列,所以,所以,所以,又因为.,所以.(2)由(1)知,因为,所以,.同理所以所以.所以当且时,【点睛】本题主要考查了数列递推关系和等比数列的性质,放缩法证明数列不等式问题,属于难题.21、(Ⅰ)见解析(Ⅱ)(Ⅲ)【解析】
(Ⅰ)对递推公式变形可得,根据等比数列的定义,即可得证;(Ⅱ)化简可得,然后再利用裂项相消法求和,即可得到结果;(Ⅲ)先求出,然后再利用分组求和求出,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预制楼梯灌浆料 施工方案
- 项目自查报告怎么写(共6篇)
- 国旗下讲话:同伴的力量(心理健康)五篇模版
- 2025年度家用电器品牌代理销售合同范本
- 2025年度虚拟现实增强现实内容制作合同
- 2025年度绿色建筑项目可行性研究报告编制合同
- 电商物流成本控制与优化方案
- 电商时代的教育资源整合与创新
- 山东省青岛莱西市(五四制)2024-2025学年七年级上学期期末语文试题
- 现代教育中的编程教学新策略
- 学校安全隐患排查治理工作台账
- GB/T 8151.13-2012锌精矿化学分析方法第13部分:锗量的测定氢化物发生-原子荧光光谱法和苯芴酮分光光度法
- 2023年辽宁铁道职业技术学院高职单招(英语)试题库含答案解析
- GB/T 23800-2009有机热载体热稳定性测定法
- T-SFSF 000012-2021 食品生产企业有害生物风险管理指南
- 2023年上海市闵行区精神卫生中心医护人员招聘笔试题库及答案解析
- 水库工程施工组织设计
- 气流粉碎机课件
- 梁若瑜著-十二宫六七二象书增注版
- SJG 74-2020 深圳市安装工程消耗量定额-高清现行
- 2017年安徽省中考数学试卷及答案解析
评论
0/150
提交评论