




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市达标名校2025届高一下数学期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不论为何值,直线恒过定点A. B. C. D.2.若各项为正数的等差数列的前n项和为,且,则()A.9 B.14 C.7 D.183.若直线过两点,,则的斜率为()A. B. C.2 D.4.对具有线性相关关系的变量,有观测数据,已知它们之间的线性回归方程是,若,则()A. B. C. D.5.函数图象的一个对称中心和一条对称轴可以是()A., B.,C., D.,6.已知向量=(),=(-1,1),若,则的值为()A. B. C. D.7.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件8.函数的一个对称中心是()A. B. C. D.9.设变量满足约束条件,则目标函数的最小值为()A. B. C. D.210.函数的图象大致为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在的递减区间是__________12.已知数列的首项,,.若对任意,都有恒成立,则的取值范围是_____13.在单位圆中,面积为1的扇形所对的圆心角的弧度数为_.14.已知数列的通项公式,则____________.15.直棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为.16.已知且,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校高一年级有学生480名,对他们进行政治面貌和性别的调查,其结果如下:性别团员群众男80女180(1)若随机抽取一人,是团员的概率为,求,;(2)在团员学生中,按性别用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名团员中任选2人,求两人中至多有1个女生的概率.18.在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以x(单位:个,)表示面包的需求量,T(单位:元)表示利润.(1)求食堂面包需求量的平均数;(2)求T关于x的函数解析式;(3)根据直方图估计利润T不少于100元的概率.19.在中,角所对的边分别为,且.(1)求;(2)若,求的周长.20.在三棱柱中,平面ABC,,,D,E分别为AB,中点.(Ⅰ)求证:平面;(Ⅱ)求证:四边形为平行四边形;(Ⅲ)求证:平面平面.21.已知数列为等差数列,为前项和,,(1)求的通项公式;(2)设,比较与的大小;(3)设函数,,求,和数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据直线方程分离参数,再由直线过定点的条件可得方程组,解方程组进而可得m的值.【详解】恒过定点,恒过定点,由解得即直线恒过定点.【点睛】本题考查含有参数的直线过定点问题,过定点是解题关键.2、B【解析】
根据等差中项定义及条件式,先求得.再由等差数列的求和公式,即可求得的值.【详解】数列为各项是正数的等差数列则由等差中项可知所以原式可化为,所以由等差数列求和公式可得故选:B【点睛】本题考查了等差中项的性质,等差数列前n项和的性质及应用,属于基础题.3、C【解析】
直接运用斜率计算公式求解.【详解】因为直线过两点,,所以直线的斜率,故本题选C.【点睛】本题考查了斜率的计算公式,考查了数学运算能力、识记公式的能力.4、A【解析】
先求出,再由线性回归直线通过样本中心点即可求出.【详解】由题意,,因为线性回归直线通过样本中心点,将代入可得,所以.故选:A.【点睛】本题主要考查线性回归直线通过样本中心点这一知识点的应用,属常规考题.5、B【解析】
直接利用余弦型函数的性质求出函数的对称轴和对称中心,即可得到答案.【详解】由题意,函数的性质,令,解得,当时,,即函数的一条对称轴的方程为,令,解得,当时,,即函数的一个对称中心为,故选B.【点睛】本题主要考查了余弦型函数的性质对称轴和对称中心的应用,着重考查学生的运算能力和转换能力,属于基础题型.6、D【解析】
对条件两边平方,得到该两个向量分别垂直,代入点的坐标,计算参数,即可.【详解】结合条件可知,,得到,代入坐标,得到,解得,故选D.【点睛】本道题考查了向量的运算,考查了向量垂直坐标表示,难度中等.7、A【解析】
根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题8、A【解析】
令,得:,即函数的对称中心为,再求解即可.【详解】解:令,解得:,即函数的对称中心为,令,即函数的一个对称中心是,故选:A.【点睛】本题考查了正切函数的对称中心,属基础题.9、B【解析】
根据不等式组画出可行域,数形结合解决问题.【详解】不等式组确定的可行域如下图所示:因为可化简为与直线平行,且其在轴的截距与成正比关系,故当且仅当目标函数经过和的交点时,取得最小值,将点的坐标代入目标函数可得.故选:B.【点睛】本题考查常规线性规划问题,属基础题,注意数形结合即可.10、C【解析】
利用函数的性质逐个排除即可求解.【详解】函数的定义域为,故排除A、B.令又,即函数为奇函数,所以函数的图像关于原点对称,排除D故选:C【点睛】本题考查了函数图像的识别,同时考查了函数的性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.12、【解析】
代入求得,利用递推关系式可得,从而可证得和均为等差数列,利用等差数列通项公式可求得通项;根据恒成立不等式可得到不等式组:,解不等式组求得结果.【详解】当时,,解得:由得:是以为首项,为公差的等差数列;是以为首项,为公差的等差数列,恒成立,解得:即的取值范围为:本题正确结果:【点睛】本题考查根据数列的单调性求解参数范围的问题,关键是能够根据递推关系式得到奇数项和偶数项分别成等差数列,从而分别求得通项公式,进而根据所需的单调性得到不等关系.13、2【解析】试题分析:由题意可得:.考点:扇形的面积公式.14、【解析】
将代入即可求解【详解】令,可得.故答案为:【点睛】本题考查求数列的项,是基础题15、【解析】试题分析:画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,MN,OB,∴MNOB,∴MN0B是平行四边形,∴BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB==,在△ANO中,由余弦定理得:cos∠ANO===.故答案为.考点:异面直线及其所成的角.16、【解析】
根据数列极限的方法求解即可.【详解】由题,故.又.故.故.故答案为:【点睛】本题主要考查了数列极限的问题,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)随机抽取一人,是团员的概率为,得,再由总人数为480得的另一个关系式,联立求解,即可得出结论;(2)根据团员男女生人数的比例,可求出抽取一个样本容量为5的样本,男生为2人,女生为3人,将5人编号,列出从5人中抽取2人的所有基本事件,求出至多有1个女生的基本事件的个数,按古典概型求概率,即可求解.【详解】解:(1)由题意得:,解得,.(2)在团员学生中,按性别用分层抽样的方法,抽取一个样本容量为5的样本,抽中男生:人,抽中女生:人,2名男生记为,3名女生记为,在这5名团员中任选2人,基本事件有:共有10个基本事件,两人中至多有1个女生包含的基本事件个数有7个,∴两人中至多有1个女生的概率.【点睛】本题考查分层抽样抽取元素个数的分配,考查古典概型的概率,属于基础题.18、(1)84;(2);(3)【解析】
(1)每个小矩形的面积乘以该组中间值,所得数据求和就是平均数;(2)根据需求量分段表示函数关系;(3)根据(1)利润T不少于100元时,即,即,求出其频率,即可估计概率.【详解】(1)估计食堂面包需求量的平均数为:(2)解:由题意,当时,利润,当时,利润,即T关于x的函数解析式(3)解:由题意,设利润T不少于100元为事件A,由(1)知,利润T不少于100元时,即,即,由直方图可知,当时,所求概率为【点睛】此题考查频率分布直方图,根据频率分布直方图求平均数,计算频率,以及建立函数模型解决实际问题,综合性比较强.19、(1);(2)【解析】
分析:(1)利用正弦定理,求得,即可求出A,根据已知条件算出,再由大边对大角,即可求出C;(2)易得,根据两角和正弦公式求出,再由正弦定理求出和,即可得到答案.详解:解:(1)由正弦定理得,又,所以,从而,因为,所以.又因为,,所以.(2)由(1)得由正弦定理得,可得,.所以的周长为.点睛:本题主要考查正弦定理在解三角形中的应用.正弦定理是解三角形的有力工具,其常见用法有以下四种:(1)已知两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)已知两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.20、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】
(Ⅰ)只需证明,,即可得平面;(Ⅱ)可得四边形为平行四边形,,,即可得四边形为平行四边形;(Ⅲ)易得平面,即可得平面平面.【详解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分别为、的中点,∴,,即四边形为平行四边形,∴,,∴四边形为平行四边形.(Ⅲ)∵,为中点,∴,又∵,且,∴平面,而平面,∴平面平面.【点睛】本题考查了空间点、线、面位置关系,属于基础题.21、(1);(2);(3),,【解析】
(1)利用基本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专利权转让合同标准文本
- 代养回收合同范例
- 农村巷道施工合同范例
- 农村果树赠与合同标准文本
- 代理拆迁合同标准文本
- 上下铺合同标准文本标准文本
- 入股合同标准文本 电子商务
- 企业运输合同标准文本
- 健身教练劳动合同标准文本
- 2025版标准借款合同范本
- 厂房电费收租合同范例
- 利用DeepSeek提升教育质量和学习效率
- 2025健身房租赁合同范本模板
- 邢台2025年河北邢台学院高层次人才引进100人笔试历年参考题库附带答案详解
- 第一次月考测试卷(试题)-2023-2024学年人教版六年级数学下册
- 室外地下综合管网管道安装工程施工方案(技术标)(1)
- 纳税信用修复申请表
- 最新苏教版五年级数学下册第四单元 数学教案
- 以化妆用品与手法的古今对比探讨昆曲的历史变迁
- IEC60826线路设计中文版
- 学生资助政策宣传主题班会PPT课件
评论
0/150
提交评论