版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
红河市重点中学新高考数学五模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,22.在中,角的对边分别为,若.则角的大小为()A. B. C. D.3.已知,,,,.若实数,满足不等式组,则目标函数()A.有最大值,无最小值 B.有最大值,有最小值C.无最大值,有最小值 D.无最大值,无最小值4.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为()(注:)A.1624 B.1024 C.1198 D.15605.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}6.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金()A.多1斤 B.少1斤 C.多斤 D.少斤7.已知函数()的部分图象如图所示.则()A. B.C. D.8.设a=log73,,c=30.7,则a,b,c的大小关系是()A. B. C. D.9.函数在的图象大致为()A. B.C. D.10.若表示不超过的最大整数(如,,),已知,,,则()A.2 B.5 C.7 D.811.已知,则下列不等式正确的是()A. B.C. D.12.已知,则()A.2 B. C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_______.14.已知数列为等差数列,数列为等比数列,满足,其中,,则的值为_______________.15.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥为阳马,侧棱底面,且,,设该阳马的外接球半径为,内切球半径为,则__________.16.某中学举行了一次消防知识竞赛,将参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,记图中从左到右依次为第一、第二、第三、第四、第五组,已知第二组的频数是80,则成绩在区间的学生人数是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列,,数列满足,n.(1)若,,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立.①当数列为等差数列时,求证:数列,的公差相等;②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.18.(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.附:19.(12分)如图(1)五边形中,,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.(1)求证:平面平面;(2)若直线与所成角的正切值为,求直线与平面所成角的正弦值.20.(12分)在四棱锥中,底面是边长为2的菱形,是的中点.(1)证明:平面;(2)设是直线上的动点,当点到平面距离最大时,求面与面所成二面角的正弦值.21.(12分)如图,三棱台的底面是正三角形,平面平面,.(1)求证:;(2)若,求直线与平面所成角的正弦值.22.(10分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至2021年12月530人后期用户2022年1月及以后200人我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
先求出集合U,再根据补集的定义求出结果即可.【详解】由题意得U=x|∵A=1,2∴CU故选C.【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题.2、A【解析】
由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值.【详解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故选A.【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.3、B【解析】
判断直线与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况.【详解】由,,所以可得.,所以由,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值.故选:B【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.4、B【解析】
根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,……两两作差得:3,4,6,9,13,18,……两两作差得:1,2,3,4,5,……设该数列为,令,设的前项和为,又令,设的前项和为.易,,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.5、A【解析】
解出集合A和B即可求得两个集合的并集.【详解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故选:A.【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.6、C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列则由等差数列的性质得,故选C7、C【解析】
由图象可知,可解得,利用三角恒等变换化简解析式可得,令,即可求得.【详解】依题意,,即,解得;因为所以,当时,.故选:C.【点睛】本题主要考查了由三角函数的图象求解析式和已知函数值求自变量,考查三角恒等变换在三角函数化简中的应用,难度一般.8、D【解析】
,,得解.【详解】,,,所以,故选D【点睛】比较不同数的大小,找中间量作比较是一种常见的方法.9、C【解析】
先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【详解】函数,则,所以为奇函数,排除B选项;当时,,所以排除A选项;当时,,排除D选项;综上可知,C为正确选项,故选:C.【点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.10、B【解析】
求出,,,,,,判断出是一个以周期为6的周期数列,求出即可.【详解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一个以周期为6的周期数列,则.故选:B.【点睛】本题考查周期数列的判断和取整函数的应用.11、D【解析】
利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项.【详解】已知,赋值法讨论的情况:(1)当时,令,,则,,排除B、C选项;(2)当时,令,,则,排除A选项.故选:D.【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题.12、A【解析】
利用分段函数的性质逐步求解即可得答案.【详解】,;;故选:.【点睛】本题考查了函数值的求法,考查对数的运算和对数函数的性质,是基础题,解题时注意函数性质的合理应用.二、填空题:本题共4小题,每小题5分,共20分。13、60【解析】
根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可.【详解】如图所示:设双曲线的半焦距为.因为,,,所以由勾股定理,得.所以.因为是上一个靠近点的三等分点,是的中点,所以.由双曲线的定义可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.则.则,得.则的底边上的高为.所以.故答案为:60【点睛】本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题.14、【解析】
根据题意,判断出,根据等比数列的性质可得,再令数列中的,,,根据等差数列的性质,列出等式,求出和的值即可.【详解】解:由,其中,,可得,则,令,,可得.①又令数列中的,,,根据等差数列的性质,可得,所以.②根据①②得出,.所以.故答案为.【点睛】本题主要考查等差数列、等比数列的性质,属于基础题.15、【解析】
该阳马补形所得到的长方体的对角线为外接球的直径,由此能求出,内切球在侧面内的正视图是的内切圆,从而内切球半径为,由此能求出.【详解】四棱锥为阳马,侧棱底面,且,,设该阳马的外接球半径为,该阳马补形所得到的长方体的对角线为外接球的直径,,,侧棱底面,且底面为正方形,内切球在侧面内的正视图是的内切圆,内切球半径为,故.故答案为.【点睛】本题考查了几何体外接球和内切球的相关问题,补形法的运用,以及数学文化,考查了空间想象能力,是中档题.解决球与其他几何体的切、接问题,关键是能够确定球心位置,以及选择恰当的角度做出截面.球心位置的确定的方法有很多,主要有两种:(1)补形法(构造法),通过补形为长方体(正方体),球心位置即为体对角线的中点;(2)外心垂线法,先找出几何体中不共线三点构成的三角形的外心,再找出过外心且与不共线三点确定的平面垂直的垂线,则球心一定在垂线上.16、30【解析】
根据频率直方图中数据先计算样本容量,再计算成绩在80~100分的频率,继而得解.【详解】根据直方图知第二组的频率是,则样本容量是,又成绩在80~100分的频率是,则成绩在区间的学生人数是.故答案为:30【点睛】本题考查了频率分布直方图的应用,考查了学生综合分析,数据处理,数形运算的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①见解析②数列不能为等比数列,见解析【解析】
(1)根据数列通项公式的特点,奇数项为等差数列,偶数项为等比数列,选用分组求和的方法进行求解;(2)①设数列的公差为,数列的公差为,当n为奇数时,得出;当n为偶数时,得出,从而可证数列,的公差相等;②利用反证法,先假设可以为等比数列,结合题意得出矛盾,进而得出数列不能为等比数列.【详解】(1)因为,,所以,且,由题意可知,数列是以1为首项,2为公差的等差数列,数列是首项和公比均为4的等比数列,所以;(2)①证明:设数列的公差为,数列的公差为,当n为奇数时,,若,则当时,,即,与题意不符,所以,当n为偶数时,,,若,则当时,,即,与题意不符,所以,综上,,原命题得证;②假设可以为等比数列,设公比为q,因为,所以,所以,,因为当时,,所以当n为偶数,且时,,即当n为偶数,且时,不成立,与题意矛盾,所以数列不能为等比数列.【点睛】本题主要考查数列的求和及数列的综合,数列求和时一般是结合通项公式的特征选取合适的求和方法,数列综合题要回归基本量,充分挖掘题目已知信息,细思细算,本题综合性较强,难度较大,侧重考查逻辑推理和数学运算的核心素养.18、(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析【解析】
(1)(i)由已给数据可完成列联表,(ii)计算出后可得;(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,,由二项分布概率公式计算出各概率得分布列,由期望公式计算期望.【详解】解(1)(i)运动达人非运动达人总计男352560女142640总计4951100(ii)由列联表得所以没有的把握认为“日平均走步数和性别是否有关”(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,.易知所以的分布列为0123.【点睛】本题考查列联表,考查独立性检验,考查随机变量的概率分布列和期望.属于中档题.本题难点在于认识到.19、(1)见解析(2)【解析】试题分析:(1)根据已知条件由线线垂直得出线面垂直,再根据面面垂直的判定定理证得成立;(2)通过已知条件求出各边长度,建系如图所示,求出平面的法向量,根据线面角公式代入坐标求得结果.试题解析:(1)证明:取的中点,连接,则,又,所以,则四边形为平行四边形,所以,又平面,∴平面,∴.由即及为的中点,可得为等边三角形,∴,又,∴,∴,∴平面平面,∴平面平面.(2)解:,∴为直线与所成的角,由(1)可得,∴,∴,设,则,取的中点,连接,过作的平行线,可建立如图所示的空间直角坐标系,则,∴,所以,设为平面的法向量,则,即,取,则为平面的一个法向量,∵,则直线与平面所成角的正弦值为.点睛:判定直线和平面垂直的方法:①定义法.②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.平面与平面垂直的判定方法:①定义法.②利用判定定理:一个平面过另一个平面的一条垂线,则这两个平面垂直.20、(1)证明见解析(2)【解析】
(1)取中点,连接,根据菱形的性质,结合线面垂直的判定定理和性质进行证明即可;(2)根据面面垂直的判定定理和性质定理,可以确定点到直线的距离即为点到平面的距离,结合垂线段的性质可以确定点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.利用空间向量夹角公式,结合同角的三角函数关系式进行求解即可.【详解】(1)证明:取中点,连接,因为四边形为菱形且.所以,因为,所以,又,所以平面,因为平面,所以.同理可证,因为,所以平面.(2)解:由(1)得平面,所以平面平面,平面平面.所以点到直线的距离即为点到平面的距离.过作的垂线段,在所有的垂线段中长度最大的为,此时必过的中点,因为为中点,所以此时,点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.则所以平面的一个法向量为,设平面的法向量为,则即取,则,,所以,所以面与面所成二面角的正弦值为.【点睛】本题考查了线面垂直的判定定理和性质的应用,考查了二面角的向量求法,考查了推理论证能力和数学运算能力.21、(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)取的中点为,连结,易证四边形为平行四边形,即,由于,为的中点,可得到,从而得到,即可证明平面,从而得到;(Ⅱ)易证,,两两垂直,以,,分别为,,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量为,设与平面所成角为,则,即可得到答案.【详解】解:(Ⅰ)取的中点为,连结.由是三棱台得,平面平面,从而.∵,∴,∴四边形为平行四边形,∴.∵,为的中点,∴,∴.∵平面平面,且交线为,平面,∴平面,而平面,∴.(Ⅱ)连结.由是正三角形,且为中点,则.由(Ⅰ)知,平面,,∴,,∴,,两两垂直.以,,分别为,,轴,建立如图所示的空间直角坐标系.设,则,,,,∴,,.设平面的一个法向量为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际医院kv配电站施工合同
- 社区活动摩托车租赁协议
- 2024年商品车跨区域运输协作合同
- 有关蒙古人的春节的演讲稿5篇范文
- 购买合同模板
- 商务大厦网线施工合同
- 办公空间改造合同
- 电话销售年终总结及明年计划2024计划15篇
- 农业科技创新提案管理
- 电子元件法定代表人聘任合同
- 镇卫生院绩效考核方案
- 9.2+积极投身创新实践(高效教案)-【中职专用】中职思想政治《哲学与人生》(高教版2023基础模块)
- 【高中语文】《逻辑的力量》课件+统编版++选择性必修上册
- 生态文明-撑起美丽中国梦学习通章节答案期末考试题库2023年
- 传染病报告卡
- 项目物资管理员培训交底总结
- 习近平总书记关于教育的重要论述研究(安庆师范大学版)学习通超星课后章节答案期末考试题库2023年
- 法院诉讼指定监护人申请书
- 类风湿性关节炎综述4572
- 机关事业单位公文写作培训-课件
- 煤矿安全生产信息化管理系统
评论
0/150
提交评论