北京市西城13中学2025届高一数学第二学期期末检测模拟试题含解析_第1页
北京市西城13中学2025届高一数学第二学期期末检测模拟试题含解析_第2页
北京市西城13中学2025届高一数学第二学期期末检测模拟试题含解析_第3页
北京市西城13中学2025届高一数学第二学期期末检测模拟试题含解析_第4页
北京市西城13中学2025届高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城13中学2025届高一数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,与的夹角为,则的值是()A. B. C. D.2.若三点共线,则()A.13 B. C.9 D.3.在中,是上一点,且,则()A. B.C. D.4.已知点,,则与向量方向相同的单位向量为()A. B. C. D.5.下列函数所具有的性质,一定成立的是()A. B.C. D.6.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或7.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是()A.,, B.,,C.,, D.,,8.已知圆锥的底面半径为,母线与底面所成的角为,则此圆锥的侧面积为()A. B. C. D.9.已知,,那么等于()A. B. C. D.10.已知不等式的解集是,则()A. B.1 C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11._________________;12.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.13.圆与圆的公共弦长为________.14.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______15.下列命题中:①若,则的最大值为;②当时,;③的最小值为;④当且仅当均为正数时,恒成立.其中是真命题的是__________.(填上所有真命题的序号)16.已知函数,的最小正周期是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角、、的对边分别为、、,已知.(1)求角的大小;(2)若,点在边上,且,,求边的长.18.(1)已知,,且、都是第二象限角,求的值.(2)求证:.19.已知函数.(I)比较,的大小.(II)求函数的最大值.20.已知函数.(1)求的最小正周期和最大值;(2)求在上的单调区间21.如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由题意可得||•||•cos,,再利用二倍角公式求得结果.【详解】由题意可得||•||•cos,2sin15°4cos15°cos30°=2sin60°,故选:C.【点睛】本题主要考查两个向量的数量积的定义,二倍角公式的应用属于基础题.2、D【解析】

根据三点共线,有成立,解方程即可.【详解】因为三点共线,所以有成立,因此,故本题选D.【点睛】本题考查了斜率公式的应用,考查了三点共线的性质,考查了数学运算能力.3、C【解析】

利用平面向量的三角形法则和共线定理,即可得到结果.【详解】因为是上一点,且,则.故选:C.【点睛】本题考查了平面向量的线性运算和共线定理的应用,属于基础题.4、A【解析】

由题得,设与向量方向相同的单位向量为,其中,利用列方程即可得解.【详解】由题可得:,设与向量方向相同的单位向量为,其中,则,解得:或(舍去)所以与向量方向相同的单位向量为故选A【点睛】本题主要考查了单位向量的概念及方程思想,还考查了平面向量共线定理的应用,考查计算能力,属于较易题.5、B【解析】

结合反三角函数的性质,逐项判定,即可求解.【详解】由题意,对于A中,令,则,所以不正确;对于C中,根据反正弦函数的性质,可得,所以是错误的;对于D中,函数当时,则满足,所以不正确,故选:B.【点睛】本题主要考查了反三角函数的性质的应用,其中解答中熟记反三角函数的性质,逐项判定是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】

作出示意图,再结合两点间的斜率公式,即可求得答案.【详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【点睛】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.7、D【解析】

由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.【详解】由祖暅原理可知:三个几何体的体积相等,则,解得,由,解得,所以.故选:D【点睛】本题考查了椎体的体积公式,需熟记公式,属于基础题.8、B【解析】

首先计算出母线长,再利用圆锥的侧面积(其中为底面圆的半径,为母线长),即可得到答案.【详解】由于圆锥的底面半径,母线与底面所成的角为,所以母线长,故圆锥的侧面积;故答案选B【点睛】本题考查圆锥母线和侧面积的计算,解题关键是熟练掌握圆锥的侧面积的计算公式,即(其中为底面圆的半径,为母线长),属于基础题9、B【解析】

首先求出题中,,之间的关系,然后利用正切的和角公式求解即可.【详解】由题知,,所以.故选:B.【点睛】本题考查了正切的和角公式,属于基础题.10、A【解析】

的两个解为-1和2.【详解】【点睛】函数零点、一元二次等式的解、函数与x轴的交点之间的相互转换。二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

利用诱导公式化简即可得出答案【详解】【点睛】本题考查诱导公式,属于基础题.12、【解析】

点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.13、【解析】

先求出公共弦方程为,再求出弦心距后即可求解.【详解】两圆方程相减可得公共弦直线方程为,圆的圆心为,半径为,圆心到的距离为,公共弦长为.故答案为:.【点睛】本题考查了圆的一般方程以及直线与圆位置关系的应用,属于基础题.14、1.1【解析】

先求出这组数据的平均数,由此能求出这组数据的方差.【详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案为1.1.【点睛】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.15、①②【解析】

根据均值不等式依次判断每个选项的正误,得到答案.【详解】①若,则的最大值为,正确②当时,,时等号成立,正确③的最小值为,取错误④当且仅当均为正数时,恒成立均为负数时也成立.故答案为①②【点睛】本题考查了均值不等式,掌握一正二定三相等的具体含义是解题的关键.16、【解析】

先化简函数f(x),再利用三角函数的周期公式求解.【详解】由题得,所以函数的最小正周期为.故答案为【点睛】本题主要考查和角的正切和正切函数的周期的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用正弦定理边角互化思想以及两角和的正弦公式可求出的值,结合角的范围可得出角的大小;(2)利用余弦定理得出,由三角形的面积公式,代入数据得出,将该等式代入等式可解出边的长.【详解】(1)由及正弦定理,可得,即,由可得,所以,因为,,所以,,;(2)由于,由余弦定理得,又因为,所以的面积,把,,代入得,所以,解得.【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了余弦定理和三角形面积公式来解三角形,解题时要根据题中相关条件列方程组进行求解,考查方程思想的应用以及运算求解能力,属于中等题.18、(1);(2)见解析【解析】

(1)利用同角三角函数间的关系式的应用,可求得cosα,sinβ,再利用两角差的正弦、余弦与正切公式即可求得cos(α﹣β)的值.(2)利用切化弦结合二倍角公式化简即可证明【详解】(1)∵sinα,cosβ,且α、β都是第二象限的角,∴cosα,sinβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ;(2)得证【点睛】本题考查两角和与差的正弦、余弦与正切,考查同角三角函数间的关系式的应用,属于中档题.19、(I);(II)时,函数取得最大值【解析】试题分析:(1)将f(),f()求出大小后比较即可.(2)根据三角函数二倍角公式将f(x)化简,最终化得一个二次函数,根据二次函数的单调性,由此得到最大值.解:(I)因为所以因为,所以(II)因为令,,所以,因为对称轴,根据二次函数性质知,当时,函数取得最大值.20、(1)f(x)的最小正周期为π,最大值为;(2)f(x)在上单调递增;在上单调递减.【解析】

(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得的最小正周期和最大值.(2)根据,利用正弦函数的单调性,即可求得在上的单调区间.【详解】解:(1)函数,即故函数的周期为,最大值为.(2)当时,,故当时,即时,为增函数;当时,即时,为减函数;即函数在上单调递增;在上单调递减.【点睛】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.21、(1)见解析(2)【解析】

(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行的性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论