上海市师范大学附属中学2025届数学高一下期末联考试题含解析_第1页
上海市师范大学附属中学2025届数学高一下期末联考试题含解析_第2页
上海市师范大学附属中学2025届数学高一下期末联考试题含解析_第3页
上海市师范大学附属中学2025届数学高一下期末联考试题含解析_第4页
上海市师范大学附属中学2025届数学高一下期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市师范大学附属中学2025届数学高一下期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A. B. C. D.2.直三棱柱ABC—A1B1C1中,BB1中点为M,BC中点为N,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与MN所成角的余弦值为A.1 B. C. D.03.设△ABC的内角A,B,C所对的边分别为a,b,c,若,则的形状一定是()A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形4.如图,长方体中,,,那么异面直线与所成角的余弦值是()A. B. C. D.5.执行如图所示的程序框图,输出的s值为A. B.C. D.6.某几何体三视图如图所示,则该几何体的体积为()A. B. C. D.7.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.8.数列的通项,其前项和为,则为()A. B. C. D.9.设函数(为常实数)在区间上的最小值为,则的值等于()A.4 B.-6 C.-3 D.-410.2019年是新中国成立70周年,涡阳县某中学为庆祝新中国成立70周年,举办了“我和我的祖国”演讲比赛,某选手的6个得分去掉一个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场制作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以表示,则4个剩余分数的方差为()A.1 B. C.4 D.6二、填空题:本大题共6小题,每小题5分,共30分。11._________________.12.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________13.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设的三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜公式”为.若,,则用“三斜公式”求得的面积为______.14.古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点,,动点满足(其中和是正常数,且),则的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”,该圆的半径为__________.15.已知方程的四个根组成一个首项为的等差数列,则_____.16.已知公式,,借助这个公式,我们可以求函数的值域,则该函数的值域是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于直线对称,且圆心在轴上.(1)求的标准方程;(2)已知动点在直线上,过点引的两条切线、,切点分别为.①记四边形的面积为,求的最小值;②证明直线恒过定点.18.在△中,若.(Ⅰ)求角的大小;(Ⅱ)若,,求△的面积.19.已知向量,满足,,且.(1)求;(2)在中,若,,求.20.已知圆心在直线上的圆C经过点,且与直线相切.(1)求过点P且被圆C截得的弦长等于4的直线方程;(2)过点P作两条相异的直线分别与圆C交于A,B,若直线PA,PB的倾斜角互补,试判断直线AB与OP的位置关系(O为坐标原点),并证明.21.在中,角所对的边分别为,已知,.(1)求的值;(2)若,求周长的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题可知每天织的布的多少构成等差数列,其中第一天为首项,一月按30天计可得,从第2天起每天比前一天多织的即为公差.又,解得.故本题选B.2、D【解析】

先找到直线异面直线AB1与MN所成角为∠,再通过解三角形求出它的余弦值.【详解】由题得,所以∠就是异面直线AB1与MN所成角或补角.由题得,,因为,所以异面直线AB1与MN所成角的余弦值为0.故选:D【点睛】本题主要考查异面直线所成的角的求法,考查余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、C【解析】

将角C用角A角B表示出来,和差公式化简得到答案.【详解】△ABC的内角A,B,C所对的边分别为a,b,c,角A,B,C为△ABC的内角故答案选C【点睛】本题考查了三角函数和差公式,意在考查学生的计算能力.4、A【解析】

可证得四边形为平行四边形,得到,将所求的异面直线所成角转化为;假设,根据角度关系可求得的三边长,利用余弦定理可求得余弦值.【详解】连接,四边形为平行四边形异面直线与所成角即为与所成角,即设,,,,在中,由余弦定理得:异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解问题,关键是能够通过平行关系将问题转化为相交直线所成角,在三角形中利用余弦定理求得余弦值.5、B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.6、B【解析】试题分析:该几何体是正方体在两个角各挖去四分之一个圆柱,因此.故选B.考点:三视图,体积.7、C【解析】关于的不等式,即的解集是,∴不等式,可化为,解得,∴所求不等式的解集是,故选C.8、A【解析】分析:利用二倍角的余弦公式化简得,根据周期公式求出周期为,从而可得结果.详解:首先对进行化简得,又由关于的取值表:123456可得的周期为,则可得,设,则,故选A.点睛:本题考查二倍角的余弦公式、三角函数的周期性以及等差数列的求和公式,意在考查灵活运用所学知识解决问题的能力以及计算能力,求求解过程要细心,注意避免计算错误.9、D【解析】试题分析:,,,当时,,故.考点:1、三角恒等变换;2、三角函数的性质.10、B【解析】

由题意得x≥3,由此能求出4个剩余数据的方差.【详解】由题意得x≥3,则4个剩余分数的方差为:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故选B.【点睛】本题考查了方差的计算问题,也考查了茎叶图的性质、平均数、方差等基础知识,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

分式上下为的二次多项式,故上下同除以进行分析.【详解】由题,,又,故.

故答案为:3.【点睛】本题考查了分式型多项式的极限问题,注意:当时,12、【解析】四棱锥的侧面积是13、【解析】

先由,根据余弦定理,求出,再由,结合余弦定理,求出,再由题意即可得出结果.【详解】因为,所以,因此;又,由余弦定理可得,所以,因此.故答案为【点睛】本题主要考查解三角形,熟记正弦定理与余弦定理即可,属于常考题型.14、【解析】

设,由动点满足(其中和是正常数,且),可得,化简整理可得.【详解】设,由动点满足(其中和是正常数,且),所以,化简得,即,所以该圆半径故该圆的半径为.【点睛】本题考查圆方程的标准形式和两点距离公式,难点主要在于计算.15、【解析】

把方程(x2﹣2x+m)(x2﹣2x+n)=0化为x2﹣2x+m=0,或x2﹣2x+n=0,设是第一个方程的根,代入方程即可求得m,则方程的另一个根可求;设另一个方程的根为s,t,(s≤t)根据韦达定理可知∴s+t=2根据等差中项的性质可知四个跟成的等差数列为,s,t,,进而根据数列的第一项和第四项求得公差,则s和t可求,进而根据韦达定理求得n,最后代入|m﹣n|即可.【详解】方程(x2﹣2x+m)(x2﹣2x+n)=0可化为x2﹣2x+m=0①,或x2﹣2x+n=0②,设是方程①的根,则将代入方程①,可解得m,∴方程①的另一个根为.设方程②的另一个根为s,t,(s≤t)则由根与系数的关系知,s+t=2,st=n,又方程①的两根之和也是2,∴s+t由等差数列中的项的性质可知,此等差数列为,s,t,,公差为[]÷3,∴s,t,∴n=st∴|m﹣n|=||.故答案为【点睛】本题主要考查了等差数列的性质.考查了学生创造性思维和解决问题的能力.16、【解析】

根据题意,可令,结合,再进行整体代换即可求解【详解】令,则,,,则,,,则函数值域为故答案为:【点睛】本题考查3倍角公式的使用,函数的转化思想,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)①②证明见解析【解析】

(1)根据圆的一般式,可得圆心坐标,将圆心坐标代入直线方程,结合圆心在轴上,即可求得圆C的标准方程.(2)①根据切线性质及切线长定理,表示出的长,根据圆的性质可知当最小时,即可求得面积的最小值;②设出M点坐标,根据两条切线可知M、A、C、B四点共圆,可得圆心坐标及半径,进而求得的方程,根据两个圆公共弦所在直线方程求法即可得直线方程,进而求得过的定点坐标.【详解】(1)由题意知,圆心在直线上,即,又因为圆心在轴上,所以,由以上两式得:,,所以.故的标准方程为.(2)①如图,的圆心为,半径,因为、是的两条切线,所以,,故又因为,根据平面几何知识,要使最小,只要最小即可.易知,当点坐标为时,.此时.②设点的坐标为,因为,所以、、、四点共圆.其圆心为线段的中点,,设所在的圆为,所以的方程为:,化简得:,因为是和的公共弦,所以,两式相减得,故方程为:,当时,,所以直线恒过定点.【点睛】本题考查了圆的一般方程与标准方程的应用,圆中三角形面积问题的应用,直线过定点问题,综合性强,属于难题.18、(Ⅰ)(Ⅱ)【解析】

(I)利用正弦定理化简已知条件,由此求得的大小.(II)利用余弦定理求得的值,再根据三角形面积公式求得三角形面积.【详解】解:(Ⅰ)在△中,由正弦定理可知,,所以.所以.即.(Ⅱ)在△中,由余弦定理可知,.所以.所以.所以△的面积.【点睛】本小题主要考查正弦定理和余弦定理解三角形,考查三角形的面积公式,属于基础题.19、(1)(2)【解析】

(1)将展开得到答案.(2),平方计算得到答案.【详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【点睛】本题考查了向量的夹角,向量的加减计算,意在考查学生的计算能力.20、(1)或;(2)平行【解析】

(1)设出圆的圆心为,半径为,可得圆的标准方程,根据题意可得,解出即可得出圆的方程,讨论过点P的直线斜率存在与否,再根据点到直线的距离公式即可求解.(2)由题意知,直线PA,PB的倾斜角互补,分类讨论两直线的斜率存在与否,当斜率均存在时,则直线PA的方程为:,直线PB的方程为:,分别与圆C联立可得,利用斜率的计算公式与作比较即可.【详解】(1)根据题意,不妨设圆C的圆心为,半径为,则圆C,由圆C经过点,且与直线相切,则,解得,故圆C的方程为:,所以点在圆上,过点P且被圆C截得的弦长等于4的直线,当直线的斜率不存在时,直线为:,满足题意;当直线的斜率存在时,设直线的斜率为,直线方程为:,故,解得,故直线方程为:.综上所述:所求直线的方程:或.(2)由题意知,直线PA,PB的倾斜角互补,且直线PA,PB的斜率均存在,设两直线的倾斜角为和,,,因为,由正切的性质,则,不妨设直线的斜率为,则PB的斜率为,即:,则:,由,得,点的横坐标为一定是该方程的解,故可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论