2025届山东省师范大学附属中学高一数学第二学期期末学业质量监测模拟试题含解析_第1页
2025届山东省师范大学附属中学高一数学第二学期期末学业质量监测模拟试题含解析_第2页
2025届山东省师范大学附属中学高一数学第二学期期末学业质量监测模拟试题含解析_第3页
2025届山东省师范大学附属中学高一数学第二学期期末学业质量监测模拟试题含解析_第4页
2025届山东省师范大学附属中学高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省师范大学附属中学高一数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.平面内任一向量都可以表示成的形式,下列关于向量的说法中正确的是()A.向量的方向相同 B.向量中至少有一个是零向量C.向量的方向相反 D.当且仅当时,2.中,则A. B. C. D.3.已知等差数列中,若,则取最小值时的()A.9 B.8 C.7 D.64.已知全集则()A. B. C. D.5.过正方形的顶点,作平面,若,则平面和平面所成的锐二面角的大小是A. B.C. D.6.下列三角方程的解集错误的是()A.方程的解集是B.方程的解集是C.方程的解集是D.方程(是锐角)的解集是7.在中,,,,则的面积是()A. B. C.或 D.或8.直线在轴上的截距为()A. B. C. D.9.集合,,则中元素的个数为()A.0 B.1 C.2 D.310.已知函数图象的一条对称轴是,则的值为()A.5 B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.点与点关于直线对称,则直线的方程为______.12.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为的铁球,并注入水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为___________.13.如图为函数(,,,)的部分图像,则函数解析式为________14.正方体中,异面直线和所成角的余弦值是________.15.不等式的解集为______.16.函数y=tan三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如果数列对任意的满足:,则称数列为“数列”.(1)已知数列是“数列”,设,求证:数列是递增数列,并指出与的大小关系(不需要证明);(2)已知数列是首项为,公差为的等差数列,是其前项的和,若数列是“数列”,求的取值范围;(3)已知数列是各项均为正数的“数列”,对于取相同的正整数时,比较和的大小,并说明理由.18.已知向量,且(1)当时,求及的值;(2)若函数的最小值是,求实数的值.19.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价元99.29.49.69.810销量件1009493908578(1)若销量与单价服从线性相关关系,求该回归方程;(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。附:对于一组数据,,……,其回归直线的斜率的最小二乘估计值为;本题参考数值:.20.在中,分别是角的对边.(1)求角的值;(2)若,且为锐角三角形,求的范围.21.已知:三点,其中.(1)若三点在同一条直线上,求的值;(2)当时,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据平面向量的基本定理,若平面内任一向量都可以表示成的形式,构成一个基底,所以向量不共线.【详解】因为任一向量,根据平面向理的基本定理得,所以向量不共线,故A,C不正确.是一个基底,所以不能为零向量,故B不正确.因为不共线,且不能为零向量,所以若,当且仅当,故D正确.故选:D【点睛】本题主要考查平面向量的基本定理,还考查了理解辨析的能力,属于基础题.2、B【解析】试题分析:由余弦定理,故选择B考点:余弦定理3、C【解析】

是等差数列,先根据已知求出首项和公差,再表示出,由的最小值确定n。【详解】由题得,,解得,那么,当n=7时,取到最小值-49.故选:C【点睛】本题考查等差数列前n项和,是基础题。4、B【解析】

先求M的补集,再与N求交集.【详解】∵全集U={0,1,2,3,4},M={0,1,2},∴∁UM={3,4}.∵N={2,3},∴(∁UM)∩N={3}.故选:B.【点睛】本题考查了交、并、补集的混合运算,是基础题.5、B【解析】法一:建立如图(1)所示的空间直角坐标系,不难求出平面APB与平面PCD的法向量分别为n1=(0,1,0),n2=(0,1,1),故平面ABP与平面CDP所成二面角的余弦值为=,故所求的二面角的大小是45°.法二:将其补成正方体.如图(2),不难发现平面ABP和平面CDP所成的二面角就是平面ABQP和平面CDPQ所成的二面角,其大小为45°.6、B【解析】

根据余弦函数的性质可判断B是错误的.【详解】因为,故无解,故B错.对于A,的解集为,故A正确.对于C,的解集是,故C正确.对于D,,.因为为锐角,,所以或或,所以或或,故D正确.故选:B.【点睛】本题考查三角方程的解,注意对于三角方程,我们需掌握有解的条件和其通解公式,而给定范围上的解,需结合整体的范围来讨论,本题属于基础题.7、C【解析】

先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选C.【点睛】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.8、A【解析】

取计算得到答案.【详解】直线在轴上的截距:取故答案选A【点睛】本题考查了直线的截距,属于简单题.9、C【解析】,则,所以,元素个数为2个。故选C。10、D【解析】

化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线对称,就是时,函数取得最值,求出a即可.【详解】函数f(x)=acosx+sinxsin(x+θ),其中tanθ=a,,其图象关于直线对称,所以θ,θ,所以tanθ=a,故答案为D【点睛】本题考查正弦函数的对称性,考查计算能力,逻辑思维能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据和关于直线对称可得直线和直线垂直且中点在直线上,从而可求得直线的斜率,利用点斜式可得直线方程.【详解】由,得:且中点坐标为和关于直线对称且在上的方程为:,即:本题正确结果:【点睛】本题考查根据两点关于直线对称求解直线方程的问题,关键是明确两点关于直线对称则连线与对称轴垂直,且中点必在对称轴上,属于常考题型.12、15【解析】

根据球的半径,先求得球的体积;根据圆与等边三角形关系,设出的边长为,由面积关系表示出圆锥的体积;设拿出铁球后水面高度为,用表示出水的体积,由即可求得液面高度.【详解】因为铁球半径为,所以由球的体积公式可得,设的边长为,则由面积公式与内切圆关系可得,解得,则圆锥的高为.则圆锥的体积为,设拿出铁球后的水面为,且到的距离为,如下图所示:则由,可得,所以拿出铁球后水的体积为,由,可知,解得,即将铁球取出后容器中水的深度为15.故答案为:15.【点睛】本题考查了圆锥内切球性质的应用,球的体积公式及圆锥体积公式的求法,属于中档题.13、【解析】

由函数的部分图像,先求得,得到,再由,得到,结合,求得,即可得到函数的解析式.【详解】由题意,根据函数的部分图像,可得,所以,又由,即,又由,即,解得,即,又因为,所以,所以.故答案为:.【点睛】本题主要考查了利用三角函数的图象求解函数的解析式,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于基础题.14、【解析】

由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【点睛】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.15、【解析】

根据一元二次不等式的解法直接求解可得结果.【详解】由得:即不等式的解集为故答案为:【点睛】本题考查一元二次不等式的求解问题,属于基础题.16、{【解析】

解方程12【详解】由题得12x+故答案为{x|x≠2kπ+【点睛】本题主要考查正切型函数的定义域的求法,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)(3),证明见解析.【解析】

(1)由新定义,结合单调性的定义可得数列是递增数列;再根据,,可得;(2)运用新定义和等差数列的求和公式,解绝对值不等式即可得到所求范围;(3)对一切,有.运用数学归纳法证明,注意验证成立;假设不等式成立,注意变形和运用新定义,即可得证.【详解】(1)证明:数列是“数列”,可得,即,即,可得数列是递增数列,.(2)数列是“数列”,可得,即,可得,即有,或,或,即或或,所以.(3)数列是各项均为正数的“数列”,对于取相同的正整数时,,运用数学归纳法证明:当时,,,显然即.设时,.即,可得,当时,即证,即证,由,即证即证,由,,,,相加可得,则对一切,有.【点睛】本题考查新定义的理解和运用,考查数列的单调性的证明和等差数列的通项公式和求和公式,以及数学归纳法的应用,考查化简整理的运算能力,属于难题.18、(1),(2).【解析】

(1)以向量为载体求解向量数量积、模长,我们只需要把向量坐标表示出来,最后用公式就能轻松完成;(2)由(1)可以把表达式求出,最终化成二次复合型函数模式,考虑轴与区间的位置关系,我们就能对函数进行进一步的研究.【详解】(1)因为,所以又因为,所以(2),当时,.当时,不满足.当时,,,不满足.综上,实数的值为.【点睛】在研究三角函数相关的性质(值域、对称中心、对称轴、单调性……)我们都是将其化为(或者余弦、正切相对应)的形式,利用整体思想,我们能比较方便的去研究他们相关性质.第二问中我们其实就是求最小值问题,当然掺杂了二次函数的“轴变区间定”的考点.,综合性较强.19、(1)(2)为使工厂获得最大利润,该产品的单价应定为9.5元.【解析】

(1)先根据公式求,再根据求即可求解;(2)先求出利润的函数关系式,再求函数的最值.【详解】解:(1)=…又所以故回归方程为(2)设该产品的售价为元,工厂利润为元,当时,利润,定价不合理。由得,故,,当且仅当,即时,取得最大值.因此,为使工厂获得最大利润,该产品的单价应定为9.5元.【点睛】本题考查线性回归方程和二次函数的最值.线性回归方程的计算要根据已知选择合适的公式.求二次函数的最值常用方法:1、根据函数单调性;2、配方法;3、基本不等式,注意等式成立的条件.20、(1);(2)【解析】

(1)由题结合余弦定理得角的值;(2)由正弦定理可知,,得,利用三角恒等变换得A的函数即可求范围【详解】(1)由题意知,∴,由余弦定理可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论