2025届浙江省杭州地区高一下数学期末经典试题含解析_第1页
2025届浙江省杭州地区高一下数学期末经典试题含解析_第2页
2025届浙江省杭州地区高一下数学期末经典试题含解析_第3页
2025届浙江省杭州地区高一下数学期末经典试题含解析_第4页
2025届浙江省杭州地区高一下数学期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省杭州地区高一下数学期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的最小值是()A. B. C. D.2.已知,且,,则()A. B. C. D.3.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样4.是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地11月1日到10日日均值(单位:)的统计数据,则下列叙述不正确的是()A.这天中有天空气质量为一级 B.这天中日均值最高的是11月5日C.从日到日,日均值逐渐降低 D.这天的日均值的中位数是5.已知向量,则与().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向6.已知,则,,的大小顺序为()A. B. C. D.7.若直线kx+(1-k)y-3=0和直线(k-1)x+(2k+3)y-2=0互相垂直,则k=()A.-3或-1 B.3或1 C.-3或1 D.-1或38.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.9.下列说法正确的是()A.小于的角是锐角 B.钝角是第二象限的角C.第二象限的角大于第一象限的角 D.若角与角的终边相同,则10.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面的棱柱)的三视图如图所示,则该三棱柱的侧视图的面积为()A. B.3 C. D.12二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前项和为,且,,则;12.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)13.已知等差数列的前n项和为,若,则的值为______________.14.函数的反函数是______.15.某市三所学校有高三文科学生分别为500人,400人,300人,在三月进行全市联考后,准备用分层抽样的方法从三所高三文科学生中抽取容量为24的样本,进行成绩分析,则应从校高三文科学生中抽取_____________人.16.已知扇形的圆心角,扇形的面积为,则该扇形的弧长的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.18.如图所示,是正三角形,线段和都垂直于平面,设,,且为的中点.(1)求证:平面;(2)求平面与平面所成的较小二面角的大小19.已知直线l经过点,并且其倾斜角等于直线的倾斜角的2倍.求直线l的方程.20.如图所示,某住宅小区的平面图是圆心角为120°的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路,已知某人从沿走到用了10分钟,从沿走到用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径的长.21.锐角三角形的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,,求面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,则,当且仅当取等号.所以选项是正确的.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.2、C【解析】

根据同角公式求出,后,根据两角和的正弦公式可得.【详解】因为,所以,因为,所以.因为,所以,因为,所以.所以.故选:C【点睛】本题考查了同角公式,考查了两角和的正弦公式,拆解是解题关键,属于中档题.3、C【解析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.4、D【解析】

由折线图逐一判断各选项即可.【详解】由图易知:第3,8,9,10天空气质量为一级,故A正确,11月5日日均值为82,显然最大,故B正确,从日到日,日均值分别为:82,73,58,34,30,逐渐降到,故C正确,中位数是,所以D不正确,故选D.【点睛】本题考查了频数折线图,考查读图,识图,用图的能力,考查中位数的概念,属于基础题.5、A【解析】

通过计算两个向量的数量积,然后再判断两个向量能否写成的形式,这样可以选出正确答案.【详解】因为,,所以,而不存在实数,使成立,因此与不共线,故本题选A.【点睛】本题考查了两个平面向量垂直的判断,考查了平面向量共线的判断,考查了数学运算能力.6、B【解析】

由三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式求得.【详解】故选B.【点睛】本题考查三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式的三角恒等变换,属于基础题.7、C【解析】

直接利用两直线垂直的充要条件列方程求解即可.【详解】因为直线kx+(1-k)y-3=0和直线(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故选C.【点睛】本题主要考查直线与直线垂直的充要条件,属于基础题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1)l1||l2⇔k18、A【解析】

利用,求出,再利用,求出即可【详解】,,,则有,代入得,则有,,,又,故答案选A【点睛】本题考查三角函数的图像问题,依次求出和即可,属于简单题9、B【解析】

可通过举例的方式验证选项的对错.【详解】A:负角不是锐角,比如“”的角,故错误;B:钝角范围是“”,是第二象限的角,故正确;C:第二象限角取“”,第一象限角取“”,故错误;D:当角与角的终边相同,则.故选B.【点睛】本题考查任意角的概念,难度较易.10、A【解析】

根据侧视图的宽为求出正三角形的边长为4,再根据体积求出正三棱柱的高,再求侧视图的面积。【详解】侧视图的宽即为俯视图的高,即三角形的边长为4,又侧视图的面积为:【点睛】理解:侧视图的宽即为俯视图的高,即可求解本题。二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.12、12.2【解析】

先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.13、1【解析】

由等差数列的性质可得a7+a9+a11=3a9,而S17=17a9,故本题可解.【详解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案为:1.【点睛】本题考查了等差数列的前n项和公式与等差数列性质的综合应用,属于基础题.14、,【解析】

求出函数的值域作为其反函数的定义域,再由求出其反函数的解析式,综合可得出答案.【详解】,则,由可得,,因此,函数的反函数是,.故答案为:,.【点睛】本题考查反三角函数的求解,解题时注意求出原函数的值域作为其反函数的定义域,考查计算能力,属于中等题.15、8【解析】

利用分层抽样中比例关系列方程可求.【详解】由已知三所学校总人数为500+400+300=1200,设从校高三文科学生中抽取x人,由分层抽样的要求及抽取样本容量为24,所以,,故答案为8.【点睛】本题考查分层抽样,考查计算求解能力,属于基本题.16、【解析】

先结合求出,再由求解即可【详解】由,则故答案为:【点睛】本题考查扇形的弧长和面积公式的使用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】

(1)本题可令求出的值,然后令求出,即可求出数列的通项公式;(2)首先可令,然后根据错位相减法即可求出数列的前项和。【详解】(1)当,,得.当时,,,两式相减,得,化简得,所以数列是首项为、公比为的等比数列,所以。(2)由(1)可知,令,则①,两边同乘以公比,得到②,由①②得:所以。【点睛】本题主要考查了数列通项的求法以及数列前项和的方法,求数列通项常用的方法有:累加法、累乘法、定义法、配凑法等;求数列前项和常用的方法有:错位相减法、裂项相消法、公式法、分组求和法等,属于中等题。18、(1)见解析(2)【解析】

(1)取的中点,连接,先证即说明,再由线面平行的判定定理说明平面.(2)延长交的延长线于,连.说明为所求二面角的平面角.再计算即可.【详解】解:(1)如图所示,取的中点,连接.∵,∴.又,∴.∴四边形为平行四边形.故.∵平面,平面,∴平面.(2)延长交的延长线于,连.由,知,为的中点,又为的中点,∴.又平面,,∴平面.∴为所求二面角的平面角.在等腰直角三角形中,易求.故所求二面角的大小为.【点睛】本题考查线面平行、二面角的平面角,属于中档题.19、【解析】

求出直线的倾斜角,可得所求直线的倾斜角,从而可得斜率,再利用点斜式可得结果.【详解】因为直线的斜率为,所以其倾斜角为30°,所以,所求直线的倾斜角为60°故所求直线的斜率为,又所求直线经过点,所以其方程为,即,故答案为:.【点睛】本题主要考查直线的斜率与倾斜角,考查了直线点斜式方程的应用,意在考查对基础知识的掌握情况,属于基础题.20、【解析】

连接,由题意,得米,米,,在△中,由余弦定理可得答案.【详解】设该扇形的半径为米,连接,如图所示:由题意,得米,米,,在△中,由余弦定理得,即,解得米.答:该扇形的半径的长为米.【点睛】本题考查了利用余弦定理解三角形,将

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论