山东省青岛五十八中2025届数学高一下期末复习检测模拟试题含解析_第1页
山东省青岛五十八中2025届数学高一下期末复习检测模拟试题含解析_第2页
山东省青岛五十八中2025届数学高一下期末复习检测模拟试题含解析_第3页
山东省青岛五十八中2025届数学高一下期末复习检测模拟试题含解析_第4页
山东省青岛五十八中2025届数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛五十八中2025届数学高一下期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果成等差数列,成等比数列,那么等于()A. B. C. D.2.用数学归纳法证明的过程中,设,从递推到时,不等式左边为()A. B.C. D.3.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为()A.7 B.8 C.9 D.104.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.π B.πC.16π D.32π5.已知等差数列,前项和为,,则()A.140 B.280 C.168 D.566.如下图,在四棱锥中,平面ABCD,,,,则异面直线PA与BC所成角的余弦值为()A. B. C. D.7.在中,已知,,,则的形状为()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定8.如图,长方体中,,,,分别过,的两个平行截面将长方体分成三个部分,其体积分别记为,,,.若,则截面的面积为()A. B. C. D.9.下列命题正确的是()A.若,则 B.若,则C.若,,则 D.若,,则10.某三棱锥的三视图如图所示,该三棱锥的外接球表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若角的终边过点,则______.12.已知,,若,则的取值范围是__________.13.当时,的最大值为__________.14.圆与圆的公共弦长为______________。15.若x、y满足约束条件,则的最大值为________.16.在中,给出如下命题:①是所在平面内一定点,且满足,则是的垂心;②是所在平面内一定点,动点满足,,则动点一定过的重心;③是内一定点,且,则;④若且,则为等边三角形,其中正确的命题为_____(将所有正确命题的序号都填上)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图1,产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将,两种产品的利润表示为投资的函数关系,并写出它们的函数关系式;(2)该企业已筹集到10万元资金,全部投入到,两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).18.如图,已知是正三角形,EA,CD都垂直于平面ABC,且,,F是BE的中点,求证:(1)平面ABC;(2)平面EDB.(3)求几何体的体积.19.在平面立角坐标系中,过点的圆的圆心在轴上,且与过原点倾斜角为的直线相切.(1)求圆的标准方程;(2)点在直线上,过点作圆的切线、,切点分别为、,求经过、、、四点的圆所过的定点的坐标.20.已知定点,点A在圆上运动,M是线段AB上的一点,且,求出点M所满足的方程,并说明方程所表示的曲线是什么.21.如图,三角形中,,是边长为l的正方形,平面底面,若分别是的中点.(1)求证:底面;(2)求几何体的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

因为成等差数列,所以,因为成等比数列,所以,因此.故选D2、C【解析】

比较与时不等式左边的项,即可得到结果【详解】因此不等式左边为,选C.【点睛】本题考查数学归纳法,考查基本分析判断能力,属基础题3、B【解析】试题分析:设该女子第一天织布尺,则,解得,所以前天织布的尺数为,由,得,解得的最小值为,故选B.考点:等比数列的应用.4、B【解析】

作轴截面,圆锥的轴截面是等腰三角形,外接球的截面是圆为球的大圆是的外接圆,由图可得球的半径与圆锥的关系.【详解】如图,作轴截面,圆锥的轴截面是等腰三角形,的外接圆是球的大圆,设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.【点睛】本题考查球的体积,关键是确定圆锥的外接球与圆锥之间的关系,即球半径与圆锥的高和底面半径之间的联系,而这个联系在其轴截面中正好体现.5、A【解析】由等差数列的性质得,,其前项之和为,故选A.6、B【解析】

作出异面直线PA与BC所成角,结合三角形的知识可求.【详解】取的中点,连接,如图,因为,,所以四边形是平行四边形,所以;所以或其补角是异面直线PA与BC所成角;设,则,;因为,所以;因为平面ABCD,所以,在三角形中,.故选:B.【点睛】本题主要考查异面直线所成角的求解,作出异面直线所成角,结合三角形知识可求.侧重考查直观想象的核心素养.7、A【解析】

由正弦定理得出,从而得出可能为钝角或锐角,分类讨论这两种情况,结合正弦函数的单调性即可判断.【详解】由正弦定理得可能为钝角或锐角当为钝角时,,符合题意,所以为钝角三角形;当为锐角时,由于在区间上单调递增,则,所以,即为钝角三角形综上,为钝角三角形故选:A【点睛】本题主要考查了利用正弦定理判断三角形的形状,属于中档题.8、B【解析】

解:由题意知,截面是一个矩形,并且长方体的体积V=6×4×3=72,∵V1:V2:V3=1:4:1,∴V1=VAEA1-DFD1=×72=12,则12=×AE×A1A×AD,解得AE=2,在直角△AEA1中,EA1=故截面的面积是EF×EA1=49、C【解析】

对每一个选项进行判断,选出正确的答案.【详解】A.若,则,取不成立B.若,则,取不成立C.若,,则,正确D.若,,则,取不成立故答案选C【点睛】本题考查了不等式的性质,找出反例是解题的关键.10、D【解析】

根据三视图还原几何体,由三棱锥的几何特征即可求出其外接球表面积.【详解】根据三视图可知,该几何体如图所示:所以该几何体的外接球,即是长方体的外接球.因为,所以外接球直径.故该三棱锥的外接球表面积为.故选:D.【点睛】本题主要考查由三视图还原几何体,并计算其外接球的表面积,意在考查学生的直观想象能力和数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、-2【解析】

由正切函数定义计算.【详解】根据正切函数定义:.故答案为-2.【点睛】本题考查三角函数的定义,掌握三角函数定义是解题基础.12、【解析】数形结合法,注意y=,y≠0等价于x2+y2=9(y>0),它表示的图形是圆x2+y2=9在x轴之上的部分(如图所示).结合图形不难求得,当-3<b≤3时,直线y=x+b与半圆x2+y2=9(y>0)有公共点.13、-3.【解析】

将函数的表达式改写为:利用均值不等式得到答案.【详解】当时,故答案为-3【点睛】本题考查了均值不等式,利用一正二定三相等将函数变形是解题的关键.14、【解析】

利用两圆一般方程求两圆公共弦方程,求其中一圆到公共弦的距离,利用直线被圆截得的弦长公式可得所求.【详解】由两圆方程相减得两圆公共弦方程为,即,圆化为,圆心到直线的距离为1,所以两圆公共弦长为,故答案为.【点睛】本题考查两圆位置关系,直线与圆的位置关系,考查运算能力,属于基本题.15、18【解析】

先作出不等式组所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.16、①②④.【解析】

①:运用已知的式子进行合理的变形,可以得到,进而得到,再次运用等式同样可以得到,,这样可以证明出是的垂心;②:运用平面向量的减法的运算法则、加法的几何意义,结合平面向量共线定理,可以证明本命题是真命题;③:运用平面向量的加法的几何意义以及平面向量共线定理,结合面积公式,可证明出本结论是错误的;④:运用平面向量的加法几何意义和平面向量的数量积的定义,可以证明出本结论是正确的.【详解】①:,同理可得:,,所以本命题是真命题;②:,设的中点为,所以有,因此动点一定过的重心,故本命题是真命题;③:由,可得设的中点为,,,故本命题是假命题;④:由可知角的平分线垂直于底边,故是等腰三角形,由可知:,所以是等边三角形,故本命题是真命题,因此正确的命题为①②④.【点睛】本题考查了平面向量的加法的几何意义和平面向量数量积的运算,考查了数形结合思想.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为,为;(2)产品投入3.75万元,产品投入6.25万元,最大利润为4万元【解析】

(1)根据题意给出的函数模型,设;代入图中数据求得既得,注意自变量;(2)设产品投入万元,则产品投入万元,设企业利润为万元.,列出利润函数为,用换元法,设,变化为二次函数可求得利润的最大值.【详解】解:(1)设投资为万元,产品的利润为万元,产品的利润为万元由题设知;由图1知,由图2知,则,.(2)设产品投入万元,则产品投入万元,设企业利润为万元.,,令,则则当时,,此时所以当产品投入3.75万元,产品投入6.25万元,企业获得最大利润为4万元.【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.18、(1)见解析(2)见解析(3)【解析】

(1)如图:证明得到答案.(2)证明得到答案.(3)几何体转化为,利用体积公式得到答案.【详解】(1)∵F分别是BE的中点,取BA的中点M,∴FM∥EA,FMEA=1∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=FM∴四边形FMCD是平行四边形,∴FD∥MC,FD⊄平面ABC,MC⊂平面ABC∴FD∥平面ABC.(2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB又EA垂直于平面ABC∴CM⊥AE,又AE∩AB=A,所以CM⊥面EAB,∵AF⊂面EAB∴CM⊥AF,又CM∥FD,从而FD⊥AF,因F是BE的中点,EA=AB所以AF⊥EB.EB,FD是平面EDB内两条相交直线,所以AF⊥平面EDB.(3)几何体的体积等于为中点,连接平面【点睛】本题考查了线面平行,线面垂直,等体积法,意在考查学生的空间想象能力和计算能力.19、(1)(2)经过、、、四点的圆所过定点的坐标为、【解析】

(1)先算出直线方程,根据相切和过点,圆心在轴上联立方程解得答案.(2)取线段的中点,经过、、、四点的圆是以线段为直径的圆,设点的坐标为,则点的坐标为,将圆方程表示出来,联立方程组解得答案.【详解】(1)由题意知,直线的方程为,整理为一般方程可得由圆的圆心在轴上,可设圆的方程为,由题意有,解得:,,故圆的标准方程为.(2)由圆的几何性质知,,,取线段的中点,由直角三角形的性质可知,故经过、、、四点的圆是以线段为直径的圆,设点的坐标为,则点的坐标为有则以为直径的圆的方程为:,整理为可得.令,解得或,故经过、、、四点的圆所过定点的坐标为、.【点睛】本题考查了圆的方程,切线问题,四点共圆,定点问题,综合性强,技巧性高,意在考查学生的综合应用能力.20、;方程所表示的曲线是以为圆心,为半径的圆.【解析】

设出点的坐标,结合向量的关系式及圆的方程可求.【详解】设,,因为,所以;,,因为点A在圆上运动,所以;化简得;方程所表示的曲线是以为圆心,为半径的圆.【点睛】本题主要考查曲线方程的求解,相关点法是常用的方法,侧重考查数学运算的核心素养.21、(1)证明见解析;(2).【解析】试题分析:(1)通过面面平行证明线面平行,所以取的中点,的中点,连接.只需通过证明HG//BC,HF//AB来证明面GHF//面ABC,从而证明底面.(2)原图形可以看作是以点C为顶点,ABDE为底的四棱锥,所四棱锥的体积公式可求得体积.试题解析:(1)取的中点,的中点,连接.(如图)∵分别是和的中点,∴,且,,且.又∵为正方形,∴,.∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论