北师大长春附属学校2025届数学高一下期末质量跟踪监视试题含解析_第1页
北师大长春附属学校2025届数学高一下期末质量跟踪监视试题含解析_第2页
北师大长春附属学校2025届数学高一下期末质量跟踪监视试题含解析_第3页
北师大长春附属学校2025届数学高一下期末质量跟踪监视试题含解析_第4页
北师大长春附属学校2025届数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大长春附属学校2025届数学高一下期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若三个实数a,b,c成等比数列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.42.在等差数列中,,则()A.5 B.8 C.10 D.143.直线的倾斜角为()A. B. C. D.4.用数学归纳法时,从“k到”左边需增乘的代数式是()A. B.C. D.5.已知公式为正数的等比数列满足:,,则前5项和()A.31 B.21 C.15 D.116.下列命题中不正确的是()A.平面∥平面,一条直线平行于平面,则一定平行于平面B.平面∥平面,则内的任意一条直线都平行于平面C.一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或异面直线7.从一批产品中取出两件产品,事件“至少有一件是次品”的对立事件是A.至多有一件是次品 B.两件都是次品C.只有一件是次品 D.两件都不是次品8.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.309.已知四棱锥中,平面平面,其中为正方形,为等腰直角三角形,,则四棱锥外接球的表面积为()A. B. C. D.10.已知函数(,,)的部分图象如图所示,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若点为圆的弦的中点,则弦所在的直线的方程为___________.12.已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于______.13.若是等比数列,,,且公比为整数,则______.14.某单位共有200名职工参加了50公里徒步活动,其中青年职工与老年职工的人数比为,中年职工有24人,现采取分层抽样的方法抽取50人参加对本次活动满意度的调查,那么应抽取老年职工的人数为________人.15.在等比数列中,,,则__________.16.已知是等比数列,,,则公比______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的前n项和为,,且.(1)求数列的通项公式;(2)若数列为递增数列,数列满足,求数列的前n项和.(3)在条件(2)下,若不等式对任意正整数n都成立,求的取值范围.18.已知函数.(1)求函数在上的单调递增区间;(2)将函数的图象向左平移个单位长度,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象.求证:存在无穷多个互不相同的整数,使得.19.已知数列满足,且(,且).(1)求证:数列是等差数列;(2)求数列的通项公式(3)设数列的前项和,求证:.20.设有关于的一元二次方程.(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.21.现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求被选中的概率;(2)求和不全被选中的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由实数a,b,c成等比数列,得b2【详解】由实数a,b,c成等比数列,得b2所以b=±2.故选C.【点睛】本题主要考查了等比数列的基本性质,属于基础题.2、B【解析】试题分析:设等差数列的公差为,由题设知,,所以,所以,故选B.考点:等差数列通项公式.3、C【解析】

求出直线的斜率,然后求解直线的倾斜角.【详解】由题意知,直线的斜率为,所以直线的倾斜角为.故选:C.【点睛】本题考查直线的斜率与倾斜角的求法,属于基础题.4、C【解析】

分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式.【详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C.【点睛】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键.5、A【解析】

由条件求出数列的公比.再利用等比数列的前项求和公式即可得出.【详解】公比为正数的等比数列满足:,则,即.所以,所以.故选:A【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.6、A【解析】

逐一考查所给的选项是否正确即可.【详解】逐一考查所给的选项:A.平面∥平面,一条直线平行于平面,可能a在平面内或与相交,不一定平行于平面,题中说法错误;B.由面面平行的定义可知:若平面∥平面,则内的任意一条直线都平行于平面,题中说法正确;C.由面面平行的判定定理可得:若一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行,题中说法正确;D.分别在两个平行平面内的两条直线只能是平行直线或异面直线,不可能相交,题中说法正确.本题选择A选项.【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.7、D【解析】试题分析:根据对立事件的定义,至少有n个的对立事件是至多有n﹣1个,由事件A:“至少有一件次品”,我们易得结果.解:∵至少有n个的否定是至多有n﹣1个又∵事件A:“至少有一件次品”,∴事件A的对立事件为:至多有零件次品,即是两件都不是次品.故答案为D.点评:本题考查的知识点是互斥事件和对立事件,互斥事件关键是要抓住不可能同时发生的要点,对立事件则要抓住有且只有一个发生,可以转化命题的否定,集合的补集来进行求解.8、C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为V=1考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.9、D【解析】

因为为等腰直角三角形,,故,则点到平面的距离为,而底面正方形的中心到边的距离也为,则顶点正方形中心的距离,正方形的外接圆的半径为,故正方形的中心是球心,则球的半径为,所以该几何体外接球的表面积,应选D.10、D【解析】试题分析:由图可知,,∴,又,∴,∴,又.∴.考点:由图象确定函数解析式.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

利用垂径定理,即圆心与弦中点连线垂直于弦.【详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【点睛】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).12、【解析】

根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【详解】∵圆锥的轴截面是正三角形,边长等于2∴圆锥的高,底面半径.∴这个圆锥的表面积:.故答案为.【点睛】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等基础知识,考查运算求解能力,是基础题.13、512【解析】

由题设条件知和是方程的两个实数根,解方程并由公比q为整数,知,,由此能够求出公比,从而得到.【详解】是等比数列,

,,

,,

和是方程的两个实数根,

解方程,

得,,

公比q为整数,

,,

,解得,

.故答案为:512【点睛】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.14、4【解析】

直接利用分层抽样的比例关系得到答案.【详解】青年职工与老年职工的人数比为,中年职工有24人,故老年职工为,故应抽取老年职工的人数为.故答案为:.【点睛】本题考查了分层抽样的相关计算,意在考查学生的计算能力.15、8【解析】

可先计算出公比,从而利用求得结果.【详解】因为,所以,所以,则.【点睛】本题主要考查等比数列基本量的相关计算,难度很小.16、【解析】

利用等比数列的性质可求.【详解】设等比数列的公比为,则,故.故答案为:【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)(为公比);(3)公比时,则有,其中为常数且;(4)为等比数列()且公比为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)当时:;当时:(2)(3)【解析】

(1)直接利用等比数列公式得到答案.(2)利用错位相减法得到答案.(3)将不等式转化为,根据双勾函数求数列的最大值得到答案.【详解】(1)当时:当时:(2)数列为递增数列,,两式相加,化简得到(3)设原式(为奇数)根据双勾函数知:或时有最大值.时,原式时,原式故【点睛】本题考查了等比数列的通项公式,错位相减法求前N项和,恒成立问题,将恒成立问题转化为利用双勾函数求数列的最大值是解题的关键,此题综合性强,计算量大,意在考查学生对于数列公式方法的灵活运用.18、(1)单调递增区间为;(2)见解析.【解析】

(1)利用二倍角的降幂公式以及辅助角公式可将函数的解析式化简为,然后求出函数在上的单调递增区间,与定义域取交集可得出答案;(2)利用三角函数图象变换得出,解出不等式的解集,可得知对中的任意一个,每个区间内至少有一个整数使得,从而得出结论.【详解】(1).令,解得,所以,函数在上的单调递增区间为,,因此,函数在上的单调递增区间为;(2)将函数的图象向左平移个单位长度,得到函数的图象,再将图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,由,对于中的任意一个,区间长度始终为,大于,每个区间至少含有一个整数,因此,存在无穷多个互不相同的整数,使得.【点睛】本题考查正弦型三角函数单调区间的求解,同时也考查了利用三角函数图象变换求函数解析式,以及三角不等式整数解的个数问题,考查运算求解能力,属于中等题.19、(1)详见解析;(2);(3)详见解析.【解析】

(1)用定义证明得到答案.(2)推出(3)利用错位相减法和分组求和法得到,再证明不等式.【详解】解:(1)由,得,即.∴数列是以为首项,1为公差的等差数列.(2)∵数列是以为首项,1为公差的等差数列,∴,∴.(3).∴,∴.【点睛】本题考查了等差数列的证明,分组求和法,错位相减法,意在考查学生对于数列公式方法的灵活运用.20、(Ⅰ)(Ⅱ)【解析】

(1)本题是一个古典概型,可知基本事件共12个,方程当时有实根的充要条件为,满足条件的事件中包含9个基本事件,由古典概型公式得到事件发生的概率.(2)本题是一个几何概型,试验的全部约束所构成的区域为,.构成事件的区域为,,.根据几何概型公式得到结果.【详解】解:设事件为“方程有实数根”.当时,方程有实数根的充要条件为.(Ⅰ)基本事件共12个:.其中第一个数表示的取值,第二个数表示的取值.事件中包含9个基本事件,事件发生的概率为.(Ⅱ)实验的全部结果所构成的区域为.构成事件的区域

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论