湖北省应城一中合教中心2025届数学高一下期末达标检测模拟试题含解析_第1页
湖北省应城一中合教中心2025届数学高一下期末达标检测模拟试题含解析_第2页
湖北省应城一中合教中心2025届数学高一下期末达标检测模拟试题含解析_第3页
湖北省应城一中合教中心2025届数学高一下期末达标检测模拟试题含解析_第4页
湖北省应城一中合教中心2025届数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省应城一中合教中心2025届数学高一下期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在空间四边形中,,,,分别是,的中点,,则异面直线与所成角的大小为()A. B. C. D.2.已知,∥则()A.6 B. C.-6 D.3.已知某区中小学学生人数如图所示,为了解学生参加社会实践活动的意向,拟采用分层抽样的方法来进行调查。若高中需抽取20名学生,则小学与初中共需抽取的人数为()A.30 B.40 C.70 D.904.在中,a,b,c分别为角A,B,C的对边,若,,,则解的个数是()A.0 B.1 C.2 D.不确定5.如图,在平行四边形中,下列结论中错误的是()A. B. C. D.6.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等7.等差数列中,,则数列前9项的和等于()A.66 B.99 C.144 D.2978.用数学归纳法证明“”,从“到”左端需增乘的代数式为()A. B. C. D.9.在中,角,,所对的边分别为,,,则下列命题中正确命题的个数为()①若,则;②若,则为钝角三角形;③若,则.A.1 B.2 C.3 D.010.无穷数列1,3,6,10,…的通项公式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,,,则______.12.函数的递增区间是__________.13.已知向量,若,则________.14.设等比数列的公比,前项和为,则.15.在等差数列中,已知,,则________.16.关于的方程只有一个实数根,则实数_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在直三棱柱(侧面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,设的中点为D,.(1)求证:平面;(2)求证:.18.如果有穷数列(m为正整数)满足,即,那么我们称其为对称数列.(1)设数列是项数为7的对称数列,其中,为等差数列,且,依次写出数列的各项;(2)设数列是项数为(正整数)的对称数列,其中是首项为50,公差为-4的等差数列.记数列的各项和为数列,当k为何值时,取得最大值?并求出此最大值;(3)对于确定的正整数,写出所有项数不超过2m的对称数列,使得依次为该数列中连续的项.当时,求其中一个数列的前2015项和.19.已知数列的前项和为,且,.(1)求数列的通项公式;(2)已知,记(且),是否存在这样的常数,使得数列是常数列,若存在,求出的值;若不存在,请说明理由;(3)若数列,对于任意的正整数,均有成立,求证:数列是等差数列.20.如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求证:平面PEC⊥平面PCD.21.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.(1)求图中m的值;(2)根据频率分布直方图,估计这200名学生的平均分(同一组中的数据用该组区间的中间值作代表)和中位数(四舍五入取整数);(3)若这200名学生的数学成绩中,某些分数段的人数x与英语成绩相应分数段的人数y之比如下表所示,求英语成绩在的人数.分数段[70,80)[80,90)[90,100)[100,110)[110,120)x:y1:22:16:51:21:1

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

平移两条异面直线到相交,根据余弦定理求解.【详解】如图所示:设的中点为,连接,所以,则是所成的角或其补角,又根据余弦定理得:,所以,异面直线与所成角的为,故选D.【点睛】本题考查异面直线所成的角和余弦定理.注意异面直线所成的角的取值范围是.2、A【解析】

根据向量平行(共线),它们的坐标满足的关系式,求出的值.【详解】,且,,解得,故选A.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.3、C【解析】

根据高中抽取的人数和高中总人数计算可得抽样比;利用小学和初中总人数乘以抽样比即可得到结果.【详解】由题意可得,抽样比为:则小学和初中共抽取:人本题正确选项:【点睛】本题考查分层抽样中样本数量的求解,关键是能够明确分层抽样原则,准确求解出抽样比,属于基础题.4、B【解析】

由题得,即得B<A,即得三角形只有一个解.【详解】由正弦定理得,所以B只有一解,所以三角形只有一解.故选:B【点睛】本题主要考查正弦定理判定三角形的个数,意在考查学生对这些知识的理解掌握水平,属于基础题.5、C【解析】

根据向量的定义及运算法则一一分析选项正误即可.【详解】在平行四边形中,显然有,,故A,D正确;根据向量的平行四边形法则,可知,故B正确;根据向量的三角形法,,故C错误;故选:C.【点睛】本题考查平面向量的基本定义和运算法则,属于基础题.6、D【解析】

首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【点睛】本题考查了椭圆的几何性质,属于基础题型.7、B【解析】

根据等差数列性质,结合条件可得,进而求得.再根据等差数列前n项和公式表示出,即可得解.【详解】等差数列中,,则,解得,因而,由等差数列前n项和公式可得,故选:B.【点睛】本题考查了等差数列性质的应用,等差数列前n项和公式的用法,属于基础题.8、B【解析】

分别求出时左端的表达式,和时左端的表达式,比较可得“从到”左端需增乘的代数式.【详解】由题意知,当时,有,当时,等式的左边为,所以左边要增乘的代数式为.故选:.【点睛】本题主要考查的是归纳推理,需要结合数学归纳法进行求解,熟知数学归纳法的步骤,最关键的是从到,考查学生仔细观察的能力,是中档题.9、C【解析】

根据正弦定理和大角对大边判断①正确;利用余弦定理得到为钝角②正确;化简利用余弦定理得到③正确.【详解】①若,则;根据,则即,即,正确②若,则为钝角三角形;,为钝角,正确③若,则即,正确故选C【点睛】本题考查了正弦定理和余弦定理,意在考查学生对于正弦定理和余弦定理的灵活运用.10、C【解析】试题分析:由累加法得:,分别相加得,,故选C.考点:数列的通项公式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先求出的平方值,再开方得到所求结果.【详解】【点睛】本题考查求解复合向量模长的问题,求解此类问题的关键是先求模长的平方,将其转化为已知向量运算的问题.12、;【解析】

先利用辅助角公式对函数化简,由可求解.【详解】函数,由,可得,所以函数的单调增区间为.故答案为:【点睛】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.13、【解析】

直接利用向量平行性质得到答案.【详解】,若故答案为【点睛】本题考查了向量平行的性质,属于简单题.14、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.15、-16【解析】

设等差数列的公差为,利用通项公式求出即可.【详解】设等差数列的公差为,得,则.故答案为【点睛】本题考查了等差数列通项公式的应用,属于基础题.16、【解析】

首先从方程看是不能直接解出这个方程的根的,因此可以转化成函数,从函数的奇偶性出发。【详解】设,则∴为偶函数,其图象关于轴对称,又依题意只有一个零点,故此零点只能是,所以,∴,∴,∴,∴,故答案为:【点睛】本题主要考查了函数奇偶性以及零点与方程的关系,方程的根就是对应函数的零点,本题属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】

(1)由可证平面;(2)先证,再证,即可证明平面,即可得出.【详解】(1)∵三棱柱为直三棱柱,∴四边形为矩形,∴E为中点,又D点为中点,∴DE为的中位线,∴,又平面,平面,∴平面;(2)∵三棱柱为直三棱柱,∴平面ABC,∴,又∵,∴四边形为正方形,所以,∵平面,∴,和相交于C,∴平面,∴.【点睛】本题考查线面平行的证明,考查线面垂直的判定及性质,考查空间想象能力,属于常考题.18、(1)2,5,8,11,8,5,2;(2);(3)答案见详解【解析】

(1)求出前四项的公差,然后写出即可(2)先算出,然后(3)依题意,可写出所有项数不超过2m的对称数列,然后求出第一个数列的【详解】(1)设数列的公差为,则,解得所以各项为2,5,8,11,8,5,2(2)因为是首项为50,公差为-4的等差数列所以所以所以当时取得最大值,为626(3)所有可能的对称数列是①,②,③,④,对于①,当时,当时所以【点睛】本题是一道数列的新定义的题,考查了数列的求和和最值问题.19、(1)(2)(3)见解析【解析】

(1)根据和项与通项关系得,再根据等比数列定义与通项公式求解(2)先化简,再根据恒成立思想求的值(3)根据和项得,再作差得,最后根据等差数列定义证明.【详解】(1),所以,由得时,,两式相减得,,,数列是以2为首项,公比为的等比数列,所以.(2)若数列是常数列,为常数.只有,解得,此时.(3)①,,其中,所以,当时,②②式两边同时乘以得,③①式减去③得,,所以,因为,所以数列是以为首项,公差为的等差数列.【点睛】本题考查利用和项求通项、等差数列定义以及利用恒成立思想求参数,考查基本分析论证与求解能力,属中档题20、(Ⅰ)见解析(Ⅱ)见解析【解析】

(Ⅰ)取PC的中点G,连结FG、EG,AF∥EG又EG⊂平面PCE,AF⊄平面PCE,AF∥平面PCE;(Ⅱ)由(Ⅰ)得EG∥AF,只需证明AF⊥面PDC,即可得到平面PEC⊥平面PCD.【详解】证明:(Ⅰ)取PC的中点G,连结FG、EG,∴FG为△CDP的中位线,FG∥CD,FG=CD.∵四边形ABCD为矩形,E为AB的中点,∴AE∥CD,AE=CD.∴FG=AE,FG∥AE,∴四边形AEGF是平行四边形,∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE,∴AF∥平面PCE;(Ⅱ)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG⊂平面PCE,∴平面PEC⊥平面PCD.【点睛】本题考查了空间线面平行、面面垂直的判定,属于中档题.21、(1)(2)平均分为,中位数为(3)140人【解析】

(1)由题得,解方程即得解;(2)利用频率分布直方图中平均数和中位数的计算公式估计这200名学生的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论