版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南省文昌华侨中学数学高一下期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为()A.4 B.5 C.8 D.92.从某健康体检中心抽取了8名成人的身高数据(单位:厘米),数据分别为172,170,172,166,168,168,172,175,则这组数据的中位数和众数分别是()A.171172 B.170172 C.168172 D.1701753.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.把一块长是10,宽是8,高是6的长方形木料削成一个体积最大的球,这个球的体积等于()A. B.480 C. D.5.如果连续抛掷一枚质地均匀的骰子100次,那么第95次出现正面朝上的点数为4的概率为()A. B. C. D.6.已知函数,若存在满足,且,则n的最小值为()A.3 B.4 C.5 D.67.已知,,则的最大值为()A.9 B.3 C.1 D.278.的值()A.小于0 B.大于0 C.等于0 D.不小于09.不等式的解集为,则实数的值为()A. B.C. D.10.下列向量组中,能作为表示它们所在平面内的所有向量的基底的是()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.在三棱锥中,已知,,则三棱锥内切球的表面积为______.12.函数是定义域为R的奇函数,当时,则的表达式为________.13.在数列中,,,则________.14.已知向量,,且,点在圆上,则等于.15.已知数列满足,,则_______;_______.16.已知等差数列中,,则_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.(1)求线段的长度;(2)若,求两条观光线路与之和的最大值.18.(1)已知,,且、都是第二象限角,求的值.(2)求证:.19.已知各项为正数的数列满足:且.(1)证明:数列为等差数列.(2)若,证明:对一切正整数n,都有20.在中,,求角A的值。21.已知向量的夹角为60°,且.(1)求与的值;(2)求与的夹角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由几何概型中的随机模拟试验可得:,将正方形面积代入运算即可.【详解】由题意在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,则其中落入黑色部分的有605个点,由随机模拟试验可得:,又,可得,故选B.【点睛】本题主要考查几何概型概率公式以及模拟实验的基本应用,属于简单题,求不规则图形的面积的主要方法就是利用模拟实验,列出未知面积与已知面积之间的方程求解.2、A【解析】
由中位数和众数的定义,即可得到本题答案.【详解】把这组数据从小到大排列为166,168,168,170,172,172,172,175,则中位数为,众数为172.故选:A【点睛】本题主要考查中位数和众数的求法.3、A【解析】
观察折线图可知月接待游客量每年7,8月份明显高于12月份,且折线图呈现增长趋势,高峰都出现在7、8月份,1月至6月的月接待游客量相对于7月至12月波动性更小.【详解】对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确.故选A.【点睛】本题考查折线图,考查考生的识图能力,属于基础题.4、A【解析】
由题意知,此球是棱长为6的正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为6,再由球的体积公式求解即可.【详解】解:由已知可得球的直径为6,故半径为3,其体积是,故选:.【点睛】本题考查长方体内切球的几何特征,以及球的体积公式,属于基础题.5、B【解析】
由随机事件的概念作答.【详解】抛掷一枚质地均匀的骰子,出现正面朝上的点数为4,这个事件是随机事件,每次抛掷出现的概率是相等的,都是,不会随机抛掷次数的变化而变化.故选:B.【点睛】本题考查随机事件的概率,属于基础题.6、D【解析】
根据正弦函数的性质,对任意(i,j=1,2,3,…,n),都有,因此要使得满足条件的n最小,则尽量让更多的取值对应的点是最值点,然后再对应图象取值.【详解】,因为正弦函数对任意(i,j=1,2,3,…,n),都有,要使n取得最小值,尽可能多让(i=1,2,3,…,n)取得最高点,因为,所以要使得满足条件的n最小,如图所示则需取,,,,,,即取,,,,,,即.故选:D【点睛】本题主要考查正弦函数的图象,还考查了数形结合的思想方法,属于中档题.7、B【解析】
由已知,可利用柯西不等式,构造柯西不等式,即可求解.【详解】由已知,可知,,利用柯西不等式,可构造得,即,所以的最大值为3,故选B.【点睛】本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.8、A【解析】
确定各个角的范围,由三角函数定义可确定正负.【详解】∵,∴,,,∴.故选:A.【点睛】本题考查各象限角三角函数的符号,掌握三角函数定义是解题关键.9、C【解析】
不等式的解集为,为方程的两根,则根据根与系数关系可得,.故选C.考点:一元二次不等式;根与系数关系.10、B【解析】
以作为基底的向量需要是不共线的向量,可以从向量的坐标发现,,选项中的两个向量均共线,得到正确结果是.【详解】解:可以作为基底的向量需要是不共线的向量,中一个向量是零向量,两个向量共线,不合要求中两个向量是,,则故与不共线,故正确;中两个向量是,两个向量共线,项中的两个向量是,两个向量共线,故选:.【点睛】本题考查平面中两向量的关系,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先计算出三棱锥的体积,利用等体积法求出三棱锥的内切球的半径,再求出内切球的表面积。【详解】取CD中点为E,并连接AE、BE在中,由等腰三角形的性质可得,同理则在中点A到边BE的距离即为点A到平面BCD的距离h,在中,【点睛】本题综合考查了三棱锥的体积、三棱锥内切圆的求法、球的表面积,属于中档题.12、【解析】试题分析:当时,,,因是奇函数,所以,是定义域为R的奇函数,所以,所以考点:函数解析式、函数的奇偶性13、【解析】
由递推公式可以求出,可以归纳出数列的周期,从而可得到答案.【详解】由,,.,可推测数列是以3为周期的周期数列.所以。故答案为:【点睛】本题考查数量的递推公式同时考查数列的周期性,属于中档题.14、【解析】试题分析:因为且在圆上,所以,解得,所以.考点:向量运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.15、【解析】
令代入可求得;方程两边取倒数,构造出等差数列,即可得答案.【详解】令,则;∵,∴数列为等差数列,∴,∴.故答案为:;.【点睛】本题考查数列的递推关系求通项,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意两边取倒数,构造新等差数列的方法.16、【解析】
设等差数列的公差为,用与表示等式,再用与表示代数式可得出答案。【详解】设等差数列的公差为,则,因此,,故答案为:。【点睛】本题考查等差数列中项的计算,解决等差数列有两种方法:基本性质法(与下标相关的性质)以及基本量法(用首项和公差来表示相应的量),一般利用基本量法来进行计算,此外,灵活利用与下标有关的基本性质进行求解,能简化计算,属于中等题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3;(2)1.【解析】
(1),.用余弦定理,即可求出;(2)设,,用正弦定理求出,,展开,结合辅助角公式可化为,由的取值范围,即可求解.【详解】(1)在中,由余弦定理得,,所以线段的长度为3千米.(2)设,因为,所以,在中,由正弦定理得,.所以,,因此,因为,所以.所以当,即时,取到最大值1.答:两条观光线路距离之和的最大值为1千米.【点睛】本题考查正、余弦定理解三角形,考查三角恒等变换,尤其是辅助角公式要熟练应用,属于中档题.18、(1);(2)见解析【解析】
(1)利用同角三角函数间的关系式的应用,可求得cosα,sinβ,再利用两角差的正弦、余弦与正切公式即可求得cos(α﹣β)的值.(2)利用切化弦结合二倍角公式化简即可证明【详解】(1)∵sinα,cosβ,且α、β都是第二象限的角,∴cosα,sinβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ;(2)得证【点睛】本题考查两角和与差的正弦、余弦与正切,考查同角三角函数间的关系式的应用,属于中档题.19、(1)证明见解析.(2)证明见解析.【解析】
(1)根据所给递推公式,将式子变形,即可由等差数列定义证明数列为等差数列.(2)根据数列为等差数列,结合等差数列通项公式求法求得通项公式,并变形后令.由求得的取值范围,即可表示出,由不等式性质进行放缩,求得后,即可证明不等式成立.【详解】(1)证明:各项为正数的数列满足:则,,同取倒数可得,所以,由等差数列定义可知数列为等差数列.(2)证明:由(1)可知数列为等差数列.,则数列是以为首项,以为公差的等差数列.则,令,因为,所以,则,所以,所以,所以由不等式性质可知,若,则总成立,因而,所以所以不等式得证.【点睛】本题考查了数列递推公式的应用,由定义证明等差数列,换元法及放缩法在证明不等式中的应用,属于中档题.20、或【解析】
根据的值可确定,进而得到,利用两角和差公式、二倍角公式和辅助角公式化简求值可求得,根据所处范围可求得的值,进而求得角.【详解】且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44807.1-2024集成电路电磁兼容建模第1部分:通用建模框架
- 共振音叉课件教学课件
- 电商物流解决方案
- 糖尿病的自我监测与管理
- 无人驾驶汽车的发展前景
- 食管癌晚期治疗进展
- 糖尿病治疗仪使用
- 初中化学常见气体的制取专题教案
- 角膜病病人的护理
- 海上日出说课稿第课时
- 部编版《道德与法治》九年级下册教案【全册共2套】
- 土木工程施工设计报告
- 2024年职称评审表
- 漏洞扫描报告模板
- 12S522 混凝土模块式排水检查井
- 全新公司股权期权协议书下载(2024版)
- DL∕T 1475-2015 电力安全工器具配置与存放技术要求
- 投诉法官枉法裁判范本
- 《健美操术语》课件
- 银行保安服务 投标方案(技术标)
- 骨科健康宣教处方
评论
0/150
提交评论