贵州省织金县第一中学2025届高一下数学期末联考试题含解析_第1页
贵州省织金县第一中学2025届高一下数学期末联考试题含解析_第2页
贵州省织金县第一中学2025届高一下数学期末联考试题含解析_第3页
贵州省织金县第一中学2025届高一下数学期末联考试题含解析_第4页
贵州省织金县第一中学2025届高一下数学期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省织金县第一中学2025届高一下数学期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,其中为已知实常数,,则下列命题中错误的是()A.若,则对任意实数恒成立;B.若,则函数为奇函数;C.若,则函数为偶函数;D.当时,若,则().2.已知,,且,则向量在向量上的投影等于()A.-4 B.4 C. D.3.设x,y满足约束条件,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]4.已知集合A={x|x2﹣x﹣2<0},B={x|≥﹣1},则A∪B=()A.(﹣1,2) B.(﹣1,2] C.(0,1) D.(0,2)5.将函数的图象向左平移个长度单位后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.6.方程的解集为()A.B.C.D.7.已知等比数列,若,则()A. B. C.4 D.8.一枚骰子连续投两次,则两次向上点数均为1的概率是()A. B. C. D.9.已知直线yx+2,则其倾斜角为()A.60° B.120° C.60°或120° D.150°10.已知向量,,则向量的夹角的余弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.12.设,其中,则的值为________.13.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是14.函数的单调增区间是_________15.各项均为实数的等比数列的前项和为,已知成等差数列,则数列的公比为________.16.某空间几何体的三视图如图所示,则该几何体的体积为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知f(α)=,其中α≠kπ(k∈Z).(1)化简f(α);(2)若f(+β)=-,β是第四象限的角,求sin(2β+)的值.18.已知角终边上一点,且,求的值.19.在中,内角所对的边分别为.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.20.已知数列an的前n项和为S(1)求数列an(2)设bn=an·log221.在中,为上的点,为上的点,且.(1)求的长;(2)若,求的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用两角和的余弦公式化简表达式.对于A选项,将化简得到的表达式代入上述表达式,可判断出A选项为真命题.对于B选项,将化简得到的表达式代入上述表达式,可判断出为奇函数,由此判断出B选项为真命题.对于C选项,将化简得到的表达式代入上述表达式,可判断出为偶函数,由此判断出C选项为真命题.对于D选项,根据、,求得的零点的表达式,由此求得(),进而判断出D选项为假命题.【详解】.不妨设.为已知实常数.若,则得;若,则得.于是当时,对任意实数恒成立,即命题A是真命题;当时,,它为奇函数,即命题B是真命题;当时,,它为偶函数,即命题C是真命题;当时,令,则,上述方程中,若,则,这与矛盾,所以.将该方程的两边同除以得,令(),则,解得().不妨取,(且),则,即(),所以命题D是假命题.故选:D【点睛】本小题主要考查两角和的余弦公式,考查三角函数的奇偶性,考查三角函数零点有关问题的求解,考查同角三角函数的基本关系式,属于中档题.2、A【解析】

根据公式,向量在向量上的投影等于,计算求得结果.【详解】向量在向量上的投影等于.故选A.【点睛】本题考查了向量的投影公式,只需记住公式代入即可,属于基础题型.3、B【解析】作出约束条件表示的可行域,如图中阴影部分所示.目标函数即,易知直线在轴上的截距最大时,目标函数取得最小值;在轴上的截距最小时,目标函数取得最大值,即在点处取得最小值,为;在点处取得最大值,为.故的取值范围是[–3,2].所以选B.【名师点睛】线性规划的实质是把代数问题几何化,即运用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点处或边界上取得.4、B【解析】

先分别求出集合A和B,由此能求出A∪B.【详解】∵集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|≥﹣1}={x|0<x≤2},∴A∪B={x|﹣1<x≤2}=(﹣1,2].故选B.【点睛】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.5、B【解析】

试题分析:由题意得,,令,可得函数的图象对称轴方程为,取是轴右侧且距离轴最近的对称轴,因为将函数的图象向左平移个长度单位后得到的图象关于轴对称,的最小值为,故选B.考点:两角和与差的正弦函数及三角函数的图象与性质.【方法点晴】本题主要考查了两角和与差的正弦函数及三角函数的图象与性质,将三角函数图象向左平移个单位,所得图象关于轴对称,求的最小值,着重考查了三角函数的化简、三角函数图象的对称性等知识的灵活应用,本题的解答中利用辅助角公式,化简得到函数,可取出函数的对称轴,确定距离最近的点,即可得到结论.6、C【解析】

利用反三角函数的定义以及正切函数的周期为,即可得到原方程的解.【详解】由,根据正切函数图像以及周期可知:,故选:C【点睛】本题考查了反三角函数的定义以及正切函数的性质,需熟记正切函数的图像与性质,属于基础题.7、D【解析】

利用等比数列的通项公式求得公比,进而求得的值.【详解】∵,∴.故选:D.【点睛】本题考查等比数列通项公式,考查运算求解能力,属于基础题.8、D【解析】

连续投两次骰子共有36种,求出满足情况的个数,即可求解.【详解】一枚骰子投一次,向上的点数有6种,则连续投两次骰子共有36种,两次向上点数均为1的有1种情况,概率为.故选:D.【点睛】本题考查古典概型的概率,属于基础题.9、B【解析】

根据直线方程求出斜率,根据斜率和倾斜角之间的关系即可求出倾斜角.【详解】由已知得直线的斜率,则倾斜角为120°,故选:B.【点睛】本题考查斜率和倾斜角的关系,是基础题.10、C【解析】

先求出向量,再根据向量的数量积求出夹角的余弦值.【详解】∵,∴.设向量的夹角为,则.故选C.【点睛】本题考查向量的线性运算和向量夹角的求法,解题的关键是求出向量的坐标,然后根据数量积的定义求解,注意计算的准确性,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.12、【解析】

由两角差的正弦公式以及诱导公式,即可求出的值.【详解】,所以,因为,故.【点睛】本题主要考查两角差的正弦公式的逆用以及诱导公式的应用.13、【解析】

利用长方体的体对角线是长方体外接球的直径,求出球的半径,从而可得结果.【详解】本题主要考查空间几何体的表面积与体积.长方体的体对角线是长方体外接球的直径,设球的半径为,则,可得,球的表面积故答案为.【点睛】本题主要考查长方体与球的几何性质,以及球的表面积公式,属于基础题.14、,【解析】

令,即可求得结果.【详解】令,解得:,所以单调递增区间是,故填:,【点睛】本题考查了型如:单调区间的求法,属于基础题型.15、【解析】

根据成等差数列得到,计算得到答案.【详解】成等差数列,则故答案为:【点睛】本题考查了等差数列,等比数列的综合应用,意在考查学生对于数列公式的灵活运用.16、2【解析】

根据三视图还原几何体,为一个底面是直角梯形的四棱锥,根据三视图的数据,分别求出其底面积和高,求出体积,得到答案.【详解】由三视图还原几何体如图所示,几何体是一个底面是直角梯形的四棱锥,由三视图可知,其底面积为,高所以几何体的体积为.故答案为.【点睛】本题考查三视图还原几何体,求四棱锥的体积,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)直接利用三角函数的诱导公式,化简运算,即可求解;(2)由,得,进一步求得,得到sin2与cos2,再由sin(2+)展开两角和的正弦求解.【详解】(1)由题意,可得=;(2)由f(+)==-,得sin.又β是第四象限的角,∴cos=.∴sin2,cos2.∴sin(2+)=sin2cos+cos2sin=.【点睛】本题主要考查了三角函数的化简求值,及诱导公式及两角差的正弦公式的应用,其中解答中熟记三家函数的恒等变换的公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18、见解析【解析】

根据三角函数定义列方程解得,再根据三角函数定义求的值.【详解】,(1)当时,.(2)当时,,解得.当时,;当时,.综上当时,;当时,;当时,.【点睛】本题考查三角函数定义,考查基本分析求解能力,属基础题.19、(Ⅰ).=.(Ⅱ).【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:在中,因为,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值为,的值为.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.20、(1)an=【解析】

(1)利用an=S(2)利用错位相减法可求Tn【详解】(1)因为Sn=2整理得到an=4,n=1(2)因为bn所以Tn2T所以-Tn【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论