版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省峨山县大龙潭中学2025届数学高一下期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点(1,0)且与直线垂直的直线方程是()A. B. C. D.2.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为()A. B. C. D.3.等比数列的各项均为正数,且,则()A. B. C. D.4.已知函数在区间内单调递增,且,若,,,则、、的大小关系为()A. B. C. D.5.设,是两条不同的直线,,是两个不同的平面,是下列命题正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则6.等比数列中,,,则公比()A.1 B.2 C.3 D.47.在中,内角所对的边分别为,且,则()A. B. C. D.8.某快递公司在我市的三个门店,,分别位于一个三角形的三个顶点处,其中门店,与门店都相距,而门店位于门店的北偏东方向上,门店位于门店的北偏西方向上,则门店,间的距离为()A. B. C. D.9.如图,是水平放置的的直观图,则的面积是()A.6 B. C. D.1210.在中,,则的形状为()A.直角三角形 B.等腰三角形 C.钝角三角形 D.正三角形二、填空题:本大题共6小题,每小题5分,共30分。11.设a>0,角α的终边经过点P(﹣3a,4a),那么sinα+2cosα的值等于.12.若角的终边经过点,则实数的值为_______.13._________________.14.若一组样本数据,,,,的平均数为,则该组样本数据的方差为15.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.16.在中,已知角的对边分别为,且,,,若有两解,则的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面是菱形,底面.(Ⅰ)证明:;(Ⅱ)若,求直线与平面所成角的余弦值.18.已知是等差数列的前项和,且,.(1)求通项公式;(2)若,求正整数的值.19.己知数列是等比数列,且公比为,记是数列的前项和.(1)若=1,>1,求的值;(2)若首项,,是正整数,满足不等式|﹣63|<62,且对于任意正整数都成立,问:这样的数列有几个?20.已知函数f(x)=x2(1)写出函数g(x)的解析式;(2)若直线y=ax+1与曲线y=g(x)有三个不同的交点,求a的取值范围;(3)若直线y=ax+b与曲线y=f(x)在x∈[-2,1]内有交点,求(a-1)221.某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
设出直线方程,代入点求得直线方程.【详解】依题意设所求直线方程为,代入点得,故所求直线方程为,故选D.【点睛】本小题主要考查两条直线垂直的知识,考查直线方程的求法,属于基础题.2、C【解析】
试题分析:将边长为1的正方形以其一边所在直线为旋转轴旋转一周得到的几何体为底面为半径为的圆、高为1的圆柱,其侧面展开图为长为,宽为1,所以所得几何体的侧面积为.故选C.3、D【解析】
本题首先可根据数列是各项均为正数的等比数列以及计算出的值,然后根据对数的相关运算以及等比中项的相关性质即可得出结果.【详解】因为等比数列的各项均为正数,,所以,,所以,故选D.【点睛】本题考查对数的相关运算以及等比中项的相关性质,考查的公式为以及在等比数列中有,考查计算能力,是简单题.4、B【解析】
由偶函数的性质可得出函数在区间上为减函数,由对数的性质可得出,由偶函数的性质得出,比较出、、的大小关系,再利用函数在区间上的单调性可得出、、的大小关系.【详解】,则函数为偶函数,函数在区间内单调递增,在该函数在区间上为减函数,,由换底公式得,由函数的性质可得,对数函数在上为增函数,则,指数函数为增函数,则,即,,因此,.【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.5、D【解析】
根据空间中线线,线面,面面位置关系,逐项判断即可得出结果.【详解】A选项,若,,则可能平行、相交、或异面;故A错;B选项,若,,,则可能平行或异面;故B错;C选项,若,,,如果再满足,才会有则与垂直,所以与不一定垂直;故C错;D选项,若,,则,又,由面面垂直的判定定理,可得,故D正确.故选D【点睛】本题主要考查空间的线面,面面位置关系,熟记位置关系,以及判定定理即可,属于常考题型.6、B【解析】
将与用首项和公比表示出来,解方程组即可.【详解】因为,且,故:,且,解得:,即,故选:B.【点睛】本题考查求解等比数列的基本量,属基础题.7、C【解析】
根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sinA,进而利用二倍角余弦公式得到结果.【详解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故选C【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.8、C【解析】
根据题意,作出图形,结合图形利用正弦定理,即可求解,得到答案.【详解】如图所示,依题意知,,,由正弦定理得:,则.故选C.【点睛】本题主要考查了三角形的实际应用问题,其中解答中根据题意作出图形,合理使用正弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解析】由直观图画法规则,可得是一个直角三角形,直角边,,故选D.10、A【解析】
在中,由,变形为,再利用内角和转化为,通过两角和的正弦展开判断.【详解】在中,因为,所以,所以,所以,所以,所以直角三角形.故选:A【点睛】本题主要考查了利用三角恒等变换判断三角形的形状,还考查了运算求解的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、﹣【解析】试题分析:利用任意角三角函数定义求解.解:∵a>0,角α的终边经过点P(﹣3a,4a),∴x=﹣3a,y=4a,r==5a,∴sinα+2cosα==﹣.故答案为﹣.考点:任意角的三角函数的定义.12、.【解析】
利用三角函数的定义以及诱导公式求出的值.【详解】由诱导公式得,另一方面,由三角函数的定义得,解得,故答案为.【点睛】本题考查诱导公式与三角函数的定义,解题时要充分利用诱导公式求特殊角的三角函数值,并利用三角函数的定义求参数的值,考查计算能力,属于基础题.13、3【解析】
分式上下为的二次多项式,故上下同除以进行分析.【详解】由题,,又,故.
故答案为:3.【点睛】本题考查了分式型多项式的极限问题,注意:当时,14、【解析】因为该组样本数据的平均数为2017,所以,解得,则该组样本数据的方差为.15、【解析】
先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.16、【解析】
利用正弦定理得到,再根据有两解得到,计算得到答案.【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理,有两解,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)由底面推出,由菱形的性质推出,即可推出平面从而得到;(Ⅱ)根据已知条件先求出AB,再利用菱形的对角线垂直求出AC,由求出PC,即可求得余弦值.【详解】(Ⅰ)证明:连接,∵底面,底面,∴.∵四边形是菱形,∴.又∵,平面,平面,∴平面,∴.(Ⅱ)设直线AC与BD交于点O,∵底面,∴直线与平面所成角的是.设“”,由,可得,∵四边形是菱形,在中,,则,于是,∴∴直线与平面所成角的余弦值是.【点睛】本题考查线线垂直、线面垂直的证明,菱形的性质,直线与平面所成的角,属于基础题.18、(1)(2)41【解析】
(1)根据通项公式先求出公差,再求即可;(2)先表示出,求出的具体值,根据求即可【详解】(1)由,,可得,则(2),,则,解得【点睛】本题考查等差数列通项公式和前项和公式的用法,属于基础题19、(1);(2)114【解析】
(1)利用等比数列的求和公式,进而可求的值;(2)根据满足不等式|﹣63|<62,可确定的范围,进而可得随着的增大而增大,利用,可求解.【详解】(1)已知数列是等比数列,且公比为,记是数列的前项和,=1,,,则;(2)满足不等式|﹣63|<62,.,,且,,得随着的增大而增大,得,又且对于任意正整数都成立,得,,且是正整数,满足的个数为:124﹣11+1=114个,即有114个,所以有114个数列.【点睛】本题以等比数列为载体,考查数列的极限,考查等比数列的求和,考查数列的单调性,属于中档题.20、(1)g(x)=0,-x2【解析】
(1)先分类讨论求出|f(x)|的解析式,即得函数g(x)的解析式;(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x⩽-2或x⩾1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1,y=-x2-x+2,-2<x<1,消去y得x2+(a+1)x-1=0.令φ(x)=x2+(a+1)x-1,写出a应满足条件解得;(3)由方程组y=ax+b,y=x2+x-2,消去y得x2+(1-a)x-2-b=0.由题意知方程在[-2,1]内至少有一个实根,设两根为x【详解】(1)当f(x)=x2+x-2≥0,得x≥1或x≤-2当f(x)=x2+x-2<0,得∴g(x)=(2)当a=0时,直线y=1与曲线y=g(x)只有2个交点,不符题意.当a≠0时,由题意得,直线y=ax+1与曲线y=g(x)在x≤-2或x≥1内必有一个交点,且在-2<x<1的范围内有两个交点.由y=ax+1y=-x2-x+2,-2<x<1,消去令φ(x)=x2+(a+1)x-1a≠0Δ=解得-1<a<0或0<a<12,所以a(3)由方程组y=ax+by=x2+x-2,消去由题意知方程在[-2,1]内至少有一个实根,设两根为x1不妨设x1∈[-2,1],x2∈R∴(a-1)==≥2×1=2当且仅当x1所以(a-1)2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届江苏省泰兴市西城中学高考冲刺英语模拟试题含解析
- 临时固农民工干活合同
- 合同收支管理
- 我有鼻子和耳朵课件
- 静脉血栓预防课件
- 《中国分区地理》课件
- 新生儿肠道病毒感染诊疗与预防专家共识解读课件
- 《次级代谢产物》课件
- 幼儿园清洁和消毒课件配课件
- 对加强作业设计方案和管理的思考作业的功能与设计方案相关理论教学课件
- 安全生产职业病预防培训
- 三级医院评审(人力资源管理)应知应会宣讲课件
- 全省精神卫生防治项目实施方案
- 数据治理课件
- 学校青年教师培养责任书
- 动车组-动车组的基本结构及特点
- 中医护理技术的质量与安全管理
- 螺栓安装施工方案
- YB-4001.1-2007钢格栅板及配套件-第1部分:钢格栅板(中文版)
- 2023年政府采购评审专家考试题库
- 第12课+明朝的兴亡-【中职专用】《中国历史》(高教版2023基础模块)
评论
0/150
提交评论