版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市普通高中2025届数学高一下期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列结论正确的是()A.空间中不同三点确定一个平面B.空间中两两相交的三条直线确定一个平面C.一条直线和一个点能确定一个平面D.梯形一定是平面图形2.一个三棱锥的三视图如图所示,则该棱锥的全面积为()A. B. C. D.3.已知圆内接四边形ABCD各边的长度分别为AB=5,BC=8,CD=3,DA=5,则AC的长为()A.6 B.7 C.8 D.94.如果数列的前项和为,那么数列的通项公式是()A. B.C. D.5.某班有男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是()A. B. C. D.6.在△ABC中,角A,B,C所对的边分别为a,b,c,若a﹣b=ccosB﹣ccosA,则△ABC的形状为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形7.函数是().A.周期为的偶函数 B.周期为的奇函数C.周期为的偶函数 D.周期为奇函数8.△中,已知,,,如果△有两组解,则的取值范围()A. B. C. D.9.已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是()A.(0,1) B. C. D.10.下图是500名学生某次数学测试成绩(单位:分)的频率分布直方图,则这500名学生中测试成绩在区间[90,100)中的学生人数是A.60 B.55 C.45 D.50二、填空题:本大题共6小题,每小题5分,共30分。11.中,若,,,则的面积______.12.设直线与圆C:x2+y2-2ay-2=0相交于A,B两点,若,则圆C的面积为________13.已知函数在一个周期内的图象如图所示,则的解析式是______.14.若,则________.15.若直线与圆相切,则________.16.若实数满足,则取值范围是____________。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期.(2)求在区间上的最小值.18.数列的前项和.(1)求数列的通项公式;(2)设,求数列的前项和.19.一扇形的周长为20,当扇形的圆心角等于多少时,这个扇形的面积最大?最大面积是多少?20.如图,在中,,四边形是边长为的正方形,平面平面,若,分别是的中点.(1)求证:平面;(2)求证:平面平面;(3)求几何体的体积.21.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】空间中不共线三点确定一个平面,空间中两两相交的三条直线确定一个或三个平面,一条直线和一个直线外一点能确定一个平面,梯形有两对边相互平行,所以梯形一定是平面图形,因此选D.2、A【解析】
数形结合,还原出该几何体的直观图,计算出各面的面积,可得结果.【详解】如图为等腰直角三角形,平面根据三视图,可知点到的距离为点到的距离为所以,故该棱锥的全面积为故选:A【点睛】本题考查三视图还原,并求表面积,难点在于还原几何体,对于一些常见的几何体要熟悉其三视图,对解题有很大帮助,属中档题.3、B【解析】
分别在△ABC和△ACD中用余弦定理解出AC,列方程解出cosD,得出AC.【详解】在△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB×BCcosB=89﹣80cosB,在△ACD中,由余弦定理得AC2=CD2+AD2﹣2AD×CDcosD=34﹣30cosD,∴89﹣80cosB=34﹣30cosD,∵A+C=180°,∴cosB=﹣cosD,∴cosD,∴AC2=34﹣30×()=1.∴AC=2.故选B.【点睛】本题考查了余弦定理的应用,三角形的解法,考查了圆内接四边形的性质的应用,属于中档题.4、D【解析】
利用计算即可.【详解】当时,当时,即,故数列为等比数列则因为,所以故选:D【点睛】本题主要考查了已知来求,关键是利用来求解,属于基础题.5、D【解析】
由题意,男生30人,女生20人,按照分层抽样方法从中抽取5人,则男生为人,女生为,从这5人中随机选取2人,共有种,全是女生的只有1种,所以至少有1名女生的概率为,故选D.6、D【解析】
用正弦定理化边为角,再由诱导公式和两角和的正弦公式化简变形可得.【详解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故选:D.【点睛】本题考查正弦定理,考查三角形形状的判断.解题关键是诱导公式的应用.7、B【解析】因,故是奇函数,且最小正周期是,即,应选答案B.点睛:解答本题时充分运用题设条件,先借助二倍角的余弦公式的变形,将函数的形式进行化简,然后再验证函数的奇偶性与周期性,从而获得问题的答案.8、D【解析】由正弦定理得A+C=180°-60°=120°,
由题意得:A有两个值,且这两个值之和为180°,
∴利用正弦函数的图象可得:60°<A<120°,
若A=90,这样补角也是90°,一解,不合题意,<sinA<1,
∵x=sinA,则2<x<故选D9、B【解析】
先求得直线y=ax+b(a>0)与x轴的交点为M(,0),由0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b;②若点M在点O和点A之间,求得b;③若点M在点A的左侧,求得b>1.再把以上得到的三个b的范围取并集,可得结果.【详解】由题意可得,三角形ABC的面积为1,由于直线y=ax+b(a>0)与x轴的交点为M(,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,如图:则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b.②若点M在点O和点A之间,如图:此时b,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即,即,可得a0,求得b,故有b.③若点M在点A的左侧,则b,由点M的横坐标1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|xN﹣xP|,即(1﹣b)•||,化简可得2(1﹣b)2=|a2﹣1|.由于此时b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.两边开方可得(1﹣b)1,∴1﹣b,化简可得b>1,故有1b.综上可得b的取值范围应是,故选B.【点睛】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考查了运算能力以及综合分析能力,分类讨论思想,属于难题.10、D【解析】分析:根据频率分布直方图可得测试成绩落在中的频率,从而可得结果.详解:由频率分布直方图可得测试成绩落在中的频率为,所以测试成绩落在中的人数为,,故选D.点睛:本题主要考查频率分布直方图的应用,属于中档题.直观图的主要性质有:(1)直方图中各矩形的面积之和为;(2)组距与直方图纵坐标的乘积为该组数据的频率.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用三角形的面积公式可求出的面积的值.【详解】由三角形的面积公式可得.故答案为:.【点睛】本题考查三角形面积的计算,熟练利用三角形的面积公式是计算的关键,考查计算能力,属于基础题.12、【解析】因为圆心坐标与半径分别为,所以圆心到直线的距离,则,解之得,所以圆的面积,应填答案.13、【解析】
由图象得出,得出该函数图象的最小正周期,可得出,再将点的坐标代入函数的解析式,结合该函数在附近的单调性求得的表达式,即可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,,则,由于函数的图象过点,且在附近单调递增,所以,,,因此,.故答案为:.【点睛】本题考查利用三角函数的图象求解析式,一般要结合图象依次求出、、的值,在利用对称中心求时,要结合函数在对称中心附近的单调性来求解,考查计算能力,属于中等题.14、【解析】
观察式子特征,直接写出,即可求出。【详解】观察的式子特征,明确各项关系,以及首末两项,即可写出,所以,相比,增加了后两项,少了第一项,故。【点睛】本题主要考查学生的数学抽象能力,正确弄清式子特征是解题关键。15、1【解析】
利用圆心到直线的距离等于半径列方程,解方程求得的值.【详解】由于直线和圆相切,所以圆心到直线的距离,即,由于,所以.故答案为:【点睛】本小题主要考查直线和圆的位置关系,考查点到直线的距离公式,属于基础题.16、;【解析】
利用三角换元,设,;利用辅助角公式将化为,根据三角函数值域求得结果.【详解】可设,,本题正确结果:【点睛】本题考查利用三角换元法求解取值范围的问题,关键是能够将问题转化为三角函数值域的求解问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:本题主要考查倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先利用倍角公式将降幂,再利用两角和的正弦公式将化简,使之化简成的形式,最后利用计算函数的最小正周期;(Ⅱ)将的取值范围代入,先求出的范围,再数形结合得到三角函数的最小值.试题解析:(Ⅰ)∵,∴的最小正周期为.(Ⅱ)∵,∴.当,即时,取得最小值.∴在区间上的最小值为.考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值.18、(1)(2)【解析】
(1)当时,,利用得到通项公式,验证得到答案.(2)根据的正负将和分为两种情况,和,分别计算得到答案.【详解】(1)当时,,当时,.综上所述.(2)当时,,所以,当时,,.综上所述.【点睛】本题考查了利用求通项公式,数列的绝对值和,忽略时的情况是容易犯的错误.19、;;【解析】
设扇形的半径为,弧长为,利用周长关系,表示出扇形的面积,利用二次函数求出面积的最大值,以及圆心角的大小.【详解】设扇形的半径为,弧长为,则,即,扇形的面积,将上式代入得,所以当且仅当时,有最大值,此时,可得,所以当时,扇形的面积取最大值,最大值为【点睛】本题考查了扇形的弧长公式、面积公式以及二次函数的性质,需熟记扇形的弧长、面积公式,属于基础题.20、(1)详见解析(2)详见解析(2)【解析】
试题分析:(1)如图,连接EA交BD于F,利用正方形的性质、三角形的中位线定理、线面平行的判定定理即可证明.(2)利用已知可得:FG⊥平面EBC,可得∠FBG就是线BD与平面EBC所成的角.经过计算即可得出.(3)利用体积公式即可得出.试题解析:(1)如图,连接,易知为的中点.因为,分别是和的中点,所以,因为平面,平面,所以平面.(2)证明:因为四边形为正方形,所以.又因为平面平面,所以平面.所以.又因为,所以.所以平面.从而平面平面.(3)取AB中点N,连接,因为,所以,且.又平面平面,所以平面.因为是四棱锥,所以.即几何体的体积.点睛:本题考查了正方形的性质、线面,面面平行垂直的判定与性质定理、三棱锥的体积计算公式、线面角的求法,考查了推理能力与计算能力,属于中档题.21、(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)由图象可得甲、乙两人五次测试的成绩分别为,甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.根据平均数,方差的公式代入计算得解(2)由可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水库堤坝安全护栏建设协议
- 建筑起重机械租赁协议
- 艺术表演办公室租赁合同
- 写字楼木地板安装协议
- 银行服务工作心得和体会
- 整形外科专家合作协议
- 婚礼音响设备租赁合同范本
- 节能环保设备生产三方合作协议
- 环保工程挖掘租赁合同
- 2024年展会组织与管理合作协议
- 第五单元写作《如何突出中心》课件(共26张)语文七年级上册
- 缺铁性贫血的药物治疗课件
- SHT 3425-2011 石油化工钢制管道用盲板
- 特种设备安全风险管控清单
- 广西检察院聘用制书记员考试真题库2023
- 54 美丽的小兴安岭(第一课时) 逐字稿 三年级上册语文 国家中小学智慧教育平台
- 统编版语文八年级上册 第四单元综合性学习《我们的互联网时代》公开课一等奖创新教学设计
- 2024届高三英语一轮复习:读后续写练习写作讲义1素材
- 如何在小学语文教学中培养学生的人文素养获奖科研报告
- 《伐檀》名师课堂
- 幼儿园优质公开课:小班数学《开心果园(5以内的点数)》课件
评论
0/150
提交评论