版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省湖州、衢州、丽水三地市数学高一下期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《九章算术》中有这样一个问题:今有女子善织,日增等尺,七日织二十八尺,第二日、第五日、第八日所织之和为十五尺,问若聘该女子做工半月(15日),一共能织布几尺()A.75 B.85 C.105 D.1202.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的最小值为()A.1 B.2 C. D.3.已知为第二象限角,则所在的象限是()A.第一或第三象限 B.第一象限C.第二象限 D.第二或第三象限4.已知点在第四象限,则角在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知圆柱的侧面展开图是一个边长为的正方形,则这个圆柱的体积是()A. B. C. D.6.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.若两个正实数,满足,且不等式有解,则实数的取值范围是()A. B. C. D.8.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为A. B. C. D.9.已知在等差数列中,的等差中项为,的等差中项为,则数列的通项公式()A. B.-1 C.+1 D.-310.若正实数满足,且恒成立,则实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列的首项为,公比为q,,则首项的取值范围是____________.12.若,则的取值范围是________.13.已知向量,,若,则__________.14.数列an满足12a115.四名学生按任意次序站成一排,则和都在边上的概率是___________.16.命题“数列的前项和”成立的充要条件是________.(填一组符合题意的充要条件即可,所填答案中不得含有字母)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角A,B,C所对的边分别为a,b,c,已知,,.(1)求边c的值;(2)求的面积18.已知从甲地到乙地的公路里程约为240(单位:km).某汽车每小时耗油量Q(单位:L)与速度x(单位:)()的关系近似符合以下两种函数模型中的一种(假定速度大小恒定):①,②,经多次检验得到以下一组数据:x04060120Q020(1)你认为哪一个是符合实际的函数模型,请说明理由;(2)从甲地到乙地,这辆车应以多少速度行驶才能使总耗油量最少?19.在中,,且.(1)求边长;(2)求边上中线的长.20.在中,角的对边分别为,已知(1)求;(2)若为锐角三角形,且边,求面积的取值范围.21.(2012年苏州17)如图,在中,已知为线段上的一点,且.(1)若,求的值;(2)若,且,求的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设第一天织尺,第二天起每天比前一天多织尺,由已知得,,故选D.【方法点睛】本题主要考查等差数列的通项公式、等差数列的前项和公式,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质()与前项和的关系.2、B【解析】
求得圆心到直线的距离,减去圆的半径,求得△ABP面积的最小时,三角形的高,由此求得△ABP面积的最小值.【详解】依题意设,故.圆的圆心为,半径为,所以圆上的点到直线的距离的最小值为(其中为圆心到直线的距离),所以△ABP面积的最小值为.故选:B【点睛】本小题主要考查圆上的点到直线的距离的最小值的求法,考查三角形面积的最值的求法,属于基础题.3、A【解析】
用不等式表示第二象限角,再利用不等式的性质求出满足的不等式,从而确定角的终边在的象限.【详解】由已知为第二象限角,则则当时,此时在第一象限.当时,,此时在第三象限.故选:A【点睛】本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限.4、B【解析】
根据第四象限内点的坐标特征,再根据正弦值、正切值的正负性直接求解即可.【详解】因为点在第四象限,所以有:是第二象限内的角.故选:B【点睛】本题考查了正弦值、正切值的正负性的判断,属于基础题.5、A【解析】
由已知易得圆柱的高为,底面圆周长为,求出半径进而求得底面圆半径即可求出圆柱体积。【详解】底面圆周长,,所以故选:A【点睛】此题考查圆柱的侧面展开为长方形,长为底面圆周长,宽为圆柱高,属于简单题目。6、C【解析】
本题首先要明确平面直角坐标系中每一象限所对应的角的范围,然后即可判断出在哪一象限中.【详解】第一象限所对应的角为;第二象限所对应的角为;第三象限所对应的角为;第四象限所对应的角为;因为,所以位于第三象限,故选C.【点睛】本题考查如何判断角所在象限,能否明确每一象限所对应的角的范围是解决本题的关键,考查推理能力,是简单题.7、D【解析】
利用基本不等式求得的最小值,根据不等式存在性问题,解一元二次不等式求得的取值范围.【详解】由于,而不等式有解,所以,即,解得或.故选:D【点睛】本小题主要考查利用基本不等式求最小值,考查不等式存在性问题的求解,考查一元二次不等式的解法,属于中档题.8、D【解析】
画出图象及直线,借助图象分析.【详解】如图,当直线位于点及其上方且位于点及其下方,或者直线与曲线相切在第一象限时符合要求.即,即,或者,得,,即,得,所以的取值范围是.故选D.【点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法.9、D【解析】试题分析:由于数列是等差数列,所以的等差中项是,故有,又有的等差中项是,所以,从而等差数列的公差,因此其通项公式为,故选D.考点:等差数列.10、A【解析】
先利用基本不等求出的最小值,然后根据恒成立,可得,再求出a的范围.【详解】因为正实数x,y满足,,当且仅当,即时取等号,恒成立,所以只需,,,的取值范围为,故选:A.【点睛】本题主要考查不等式恒成立问题以及基本不等式求最值,解题时注意“一正、二定、三相等”的应用,本题属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题得,利用即可得解【详解】由题意知,,可得,又因为,所以可求得.故答案为:【点睛】本题考查了等比数列的通项公式其前n项和公式、数列极限的运算法则,考查了推理能力与计算能力,属于中档题.12、【解析】
利用反函数的运算法则,定义及其性质,求解即可.【详解】由,得所以,又因为,所以.故答案为:【点睛】本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,属于基础题.13、1【解析】由,得.即.解得.14、14,n=1【解析】
试题分析:这类问题类似于Sn=f(an)的问题处理方法,在12a1+122a2+...+1.考点:数列的通项公式.15、【解析】
写出四名学生站成一排的所有可能情况,得出和都在边上的情况即可求得概率.【详解】四名学生按任意次序站成一排,所有可能的情况为:,,,,共24种情况,其中和都在边上共有,4种情况,所以和都在边上的概率是.故答案为:【点睛】此题考查古典概型,根据古典概型求概率,关键在于准确求出基本事件总数和某一事件包含的基本事件个数.16、数列为等差数列且,.【解析】
根据题意,设该数列为,由数列的前项和公式分析可得数列为等差数列且,,反之验证可得成立,综合即可得答案.【详解】根据题意,设该数列为,若数列的前项和,则当时,,当时,,当时,符合,故有数列为等差数列且,,反之当数列为等差数列且,时,,;故数列的前项和”成立的充要条件是数列为等差数列且,,故答案为:数列为等差数列且,.【点睛】本题考查充分必要条件的判定,关键是掌握充分必要条件的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)3【解析】
(1)由可得,利用正弦定理可得,即可求解;(2)先利用余弦定理求得,即可求得,再利用三角形面积公式求解即可【详解】解:(1)因为,所以,即,则(2)由(1),则,所以,所以【点睛】本题考查利用正弦定理边角互化,考查利用余弦定理求角,考查三角形面积公式的应用18、(1)选择模型①,见解析;(2)80.【解析】
(1)由题意可知所选函数模型应为单调递增函数,即可判断选择;(2)将,代入函数型①,可得出的值,进而可得出总耗油量关于速度的函数关系式,进而得解.【详解】(1)选择模型①理由:由题意可知所选函数模型应为单调递增函数,而函数模型②为一个单调递减函数,故选择模型①.(2)将,代入函数型①,可得:,则,总耗油量:,当时,W有最小值30.甲地到乙地,这辆车以80km/h的速度行驶才能使总耗油量最少.【点睛】本题考查函数模型的实际应用,考查逻辑思维能力,考查实际应用能力,属于常考题.19、(1);(2).【解析】
(1)利用同角的三角函数关系,可以求出的值,利用三角形内角和定理,二角和的正弦公式可以求出,最后利用正弦定理求出长;(2)利用余弦定理可以求出的长,进而可以求出的长,然后在中,再利用余弦定理求出边上中线的长.【详解】(1),,由正弦定理可知中:(2)由余弦定理可知:,是的中点,故,在中,由余弦定理可知:【点睛】本题考查了正弦定理、余弦定理、同角的三角函数关系、以及三角形内角和定理,考查了数学运算能力.20、(1);(2)【解析】
(1)利用正弦定理边化角,再利用和角的正弦公式化简即得B的值;(2)先根据已知求出,再求面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售内勤年度工作计划范文销售内勤工作计划范文
- 年文广局深化文化体育建设计划
- 教师新学期工作计划学校工作计划
- 有关于计划生育的工作计划
- 2024年五年级班主任工作计划范文
- 年学生会社联工作计划范文
- 弟子规教学计划
- 公司行政部个人工作总结及计划
- 物业主管工作计划
- 食药监年度电子政务工作计划
- 人教版八年级上册数学期末考试试题
- 2024-2030年中国三文鱼行业营销模式及投资盈利分析报告
- 病句(原卷版)-2024年中考语文题集
- 先兆流产课件-课件
- 【课件】讲文明懂礼仪守规矩 课件-2024-2025学年文明礼仪教育主题班会
- 施工单位主体验收自评报告
- 2024年保密基础知识竞赛试题库及答案(共355题)
- 2024年储粮安全生产责任制样本(四篇)
- 追觅科技笔试在线测评题
- Unit6《Is he your grandpa?》-2024-2025学年三年级上册英语单元测试卷(译林版三起 2024新教材)
- 2024年中国物流集团限公司夏季招聘高频500题难、易错点模拟试题附带答案详解
评论
0/150
提交评论