版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北安陆一中2025届数学高一下期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某中学高一年级甲班有7名学生,乙班有8名学生参加数学竞赛,他们取得的成绩的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是82,若从成绩在的学生中随机抽取两名学生,则两名学生的成绩都高于82分的概率为()A. B. C. D.2.等比数列{an}中,Tn表示前n项的积,若T5=1,则()A.a1=1 B.a3=1 C.a4=1 D.a5=13.若向量,则A. B. C. D.4.已知函数的最大值为,最小值为,则的值为()A. B. C. D.5.一实体店主对某种产品的日销售量(单位:件)进行为期n天的数据统计,得到如下统计图,则下列说法错误的是()A. B.中位数为17C.众数为17 D.日销售量不低于18的频率为0.56.中,,则()A.5 B.6 C. D.87.已知数列的前项和为,若,对任意的正整数均成立,则()A.162 B.54 C.32 D.168.已知向量,且,则().A. B.C. D.9.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.10.若,则与夹角的余弦值为()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为_____________.12.等比数列中首项,公比,则______.13.已知圆C的方程为,一定点为A(1,2),要使过A点作圆的切线有两条,则a的取值范围是____________14.在△中,三个内角、、的对边分别为、、,若,,,则________15.已知,则的最小值是__________.16.数列的前项和,则的通项公式_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列{an}满足a2=0,a6+a8=-10.(1)求数列{an}的通项公式;(2)求数列的前n项和.18.在中,角、、的对边分别为、、,已知.(1)求角的大小;(2)若,点在边上,且,,求边的长.19.已知数列满足:,(1)求,的值;(2)求数列的通项公式;(3)设,数列的前n项和,求证:20.已知角的顶点与原点重合,其始边与轴正半轴重合,终边与单位圆交于点,若,且.(1)求的值;(2)求的值.21.在中,内角,,所对的边分别为,,.若.(1)求角的度数;(2)当时,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
计算得到,,再计算概率得到答案.【详解】,解得;,解得;故.故选:.【点睛】本题考查了平均值,中位数,概率的计算,意在考查学生的应用能力.2、B【解析】分析:由题意知,由此可知,所以一定有.详解
,.
故选B.点睛:本题考查数列的性质和应用,解题时要认真审题,仔细解答.3、B【解析】
根据向量的坐标运算法则,可直接得出结果.【详解】因为,所以.故选B【点睛】本题主要考查向量的坐标运算,熟记运算法则即可,属于基础题型.4、B【解析】由解得为函数的定义域.令,消去得,图像为椭圆的一部分,如下图所示.,即直线,由图可知,截距在点处取得最小值,在与椭圆相切的点处取得最大值.而,故最小值为.联立,消去得,其判别式为零,即,解得(负根舍去),即,故.【点睛】本题主要考查含有两个根号的函数怎样求最大值和最小值.先用换元法,将原函数改写成为一次函数的形式.然后利用和的关系,得到的可行域,本题中可行域为椭圆在第一象限的部分.然后利用,用截距的最大值和最小值来求函数的最大值和最小值.5、B【解析】
由统计图,可计算出总数、中位数、众数,算得销量不低于18件的天数,即可求得频率.【详解】由统计图可知,总数,所以A正确;从统计图可以看出,从小到大排列时,中间两天的销售量的平均值为,所以B错误;从统计图可以看出,销量最高的为17件,所以C正确;从统计图可知,销量不低于18的天数为,所以频率为,所以D正确.综上可知,错误的为B故选:B【点睛】本题考查了统计中的总数、中位数、众数和频率的相关概念和性质,属于基础题.6、D【解析】
根据余弦定理,可求边长.【详解】,代入数据,化解为解得或(舍)故选D.【点睛】本题考查了已知两边及其一边所对角,求另一边,这种题型用余弦定理,属于基础题型.7、B【解析】
由,得到数列表示公比为3的等比数列,求得,进而利用,即可求解.【详解】由,可得,所以数列表示公比为3的等比数列,又由,,得,解得,所以,所以故选B.【点睛】本题主要考查了等比数列的定义,以及数列中与之间的关系,其中解答中熟记等比数列的定义和与之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.8、D【解析】
运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【详解】,,故本题选D.【点睛】本题考查了平面向量加法的几何意义,属于基础题.9、A【解析】
根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.10、A【解析】
根据向量的夹角公式,准确运算,即可求解,得到答案.【详解】由向量,则与夹角的余弦值为,故选A.【点睛】本题主要考查了向量的夹角公式的应用,其中解答中熟记向量的夹角公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】函数的定义域为故答案为12、9【解析】
根据等比数列求和公式,将进行转化,然后得到关于和的等式,结合,讨论出和的值,得到答案.【详解】因为等比数列中首项,公比,所以成首项为,公比为的等比数列,共项,所以整理得因为所以可得,等式右边为整数,故等式左边也需要为整数,则应是的约数,所以可得,所以,当时,得,此时当时,得,此时当时,得,此时,所以,故答案为:.【点睛】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.13、【解析】
使过A点作圆的切线有两条,定点在圆外,代入圆方程计算得到答案.【详解】已知圆C的方程为,要使过A点作圆的切线有两条即点A(1,2)在圆C外:恒成立.综上所述:故答案为:【点睛】本题考查了点和圆的位置关系,通过切线数量判断位置关系是解题的关键.14、【解析】
利用正弦定理求解角,再利用面积公式求解即可.【详解】由,因为,故,.故.故答案为:【点睛】本题主要考查了解三角形的运用,根据题中所给的边角关系选择正弦定理与面积公式等.属于基础题型.15、【解析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.16、【解析】
根据和之间的关系,应用公式得出结果【详解】当时,;当时,;∴故答案为【点睛】本题考查了和之间的关系式,注意当和时要分开讨论,题中的数列非等差数列.本题属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)设等差数列{an}的公差为d,由已知条件可得,解得,故数列{an}的通项公式为an=2-n.(2)设数列的前n项和为Sn,∵,∴Sn=-记Tn=,①则Tn=,②①-②得:Tn=1+,∴Tn=-,即Tn=4-.∴Sn=-4+=4-4+=.18、(1);(2).【解析】
(1)利用正弦定理边角互化思想以及两角和的正弦公式可求出的值,结合角的范围可得出角的大小;(2)利用余弦定理得出,由三角形的面积公式,代入数据得出,将该等式代入等式可解出边的长.【详解】(1)由及正弦定理,可得,即,由可得,所以,因为,,所以,,;(2)由于,由余弦定理得,又因为,所以的面积,把,,代入得,所以,解得.【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了余弦定理和三角形面积公式来解三角形,解题时要根据题中相关条件列方程组进行求解,考查方程思想的应用以及运算求解能力,属于中等题.19、(1);;(2)(3)见证明;【解析】
(1)令可求得;(2)在已知等式基础上,用代得另一等式,然后相减,可求得,并检验一下是否适合此表达式;(3)用裂项相消法求和.【详解】解:(1)由已知得,∴(2)由,①得时,,②①-②得∴,也适合此式,∴().(3)由(2)得,∴∴∵,∴∴【点睛】本题考查由数列的通项公式,考查裂项相消法求和.求通项公式时的方法与已知求的方法一样,本题就相当于已知数列的前项和,要求.注意首项求法的区别.20、(1);(2)【解析】
(1)平方处理求出,根据角的范围可得,即可得解;(2)变形处理,结合(1)已计算的结果即可求解.【详解】(1)由题:角的顶点与原点重合,其始边与轴正半轴重合,终边与单位圆交于点,若,,即,两边平方可得:,,所以;(2)【点睛】此题考查同角三角函数的关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某高校图书馆系列工程施工组织设计方案
- 新型节能墙体材料生产线建设项目可研
- 二零二四年度离婚谈判中的财产审计报告合同3篇
- 《诺基亚EDGE规划》课件
- 绝经后卵巢恶性肿瘤病因介绍
- 部编版四年级语文上册《语文园地三》教学设计
- 《客户关系管理实务》电子教案 16实训项目:房地产中介店铺客户关系的选择
- 2025年学校离退休党支部工作计划范文
- 电烧伤病因介绍
- 2024年度房地产买卖合同标的及购房款支付方式5篇
- 中南大学攻防实验室方案
- 明确目标推动团队发展计划
- 《傅雷家书》读书分享
- 椎管内麻醉与治疗课件
- 2024年国家公务员考试《申论》真题(副省级)及答案解析
- 银行发展新质生产力的心得体会范文
- 医院消防维保方案及实施细则
- 福建省厦门市2023-2024学年高一上学期语文期末考试试卷(含答案)
- 厨师培训食品安全和卫生培训考核试卷
- DB15T 435-2020 公路风吹雪雪害防治技术规程
- 北京邮电大学《自然语言理解》2022-2023学年期末试卷
评论
0/150
提交评论