版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济宁市二中2025届高一下数学期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的大致图像是下列哪个选项()A. B.C. D.2.若程序框图如图所示,则该程序运行后输出k的值是()A.5 B.6 C.7 D.83.已知等差数列的前项和为,,当时,的值为()A.21 B.22 C.23 D.244.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.5.将正整数排列如下:则图中数2020出现在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列6.已知表示两条不同的直线,表示三个不同的平面,给出下列四个命题:①,,,则;②,,,则;③,,,则;④,,,则其中正确的命题个数是()A.1 B.2 C.3 D.47.在等差数列中,若前项的和,,则()A. B. C. D.8.在中,角,,所对的边分别为,,,若,且,则的面积的最大值为()A. B. C. D.9.过点且与点距离最大的直线方程是()A. B.C. D.10.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设为三条不同的直线,为两个不同的平面,给出下列四个判断:①若则;②若是在内的射影,,则;③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;④若球的表面积扩大为原来的16倍,则球的体积扩大为原来的32倍;其中正确的为___________.12.关于的不等式的解集是,则______.13.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法——“三斜求积术”,即的,其中分别为内角的对边.若,且则的面积的最大值为____.14.在等差数列中,已知,,则________.15.若实数满足,则取值范围是____________。16.已知求______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面四边形中,已知,,,为线段上一点.(1)求的值;(2)试确定点的位置,使得最小.18.已知圆(为坐标原点),直线.(1)过直线上任意一点作圆的两条切线,切点分别为,求四边形面积的最小值.(2)过点的直线分别与圆交于点(不与重合),若,试问直线是否过定点?并说明理由.19.无穷数列满足:为正整数,且对任意正整数,为前项、、、中等于的项的个数.(1)若,求和的值;(2)已知命题存在正整数,使得,判断命题的真假并说明理由;(3)若对任意正整数,都有恒成立,求的值.20.已知.(1)化简;(2)若,且,求的值.21.一个工厂在某年里连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:x1.081.121.191.281.361.481.591.681.801.87y2.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;(2)①建立月总成本y与月产量x之间的回归方程;②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:=14.45,=27.31,=0.850,=1.042,=1.1.②参考公式:相关系数:r=.回归方程=x+中斜率和截距的最小二乘估计公式分别为:=,=-
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
化简,然后作图,值域小于部分翻折关于轴对称即可.【详解】,的图象与关于轴对称,将部分向上翻折,图象变化过程如下:轴上方部分图形即为所求图象.故选:B.【点睛】本题主要考查图形的对称变化,掌握关于轴对称是解决问题的关键.属于中档题.2、A【解析】试题分析:第一次循环运算:;第二次:;第三次:;第四次:;第五次:,这时符合条件输出,故选A.考点:算法初步.3、B【解析】
由,得,按或分两种情况,讨论当时,求的值.【详解】已知等差数列的前项和为,由,得,当时,有,得,,∴时,此时.当时,有,得,,∴时,此时.故选:B【点睛】本题考查等差数列的求和公式及其性质的应用,也考查分类讨论的思想,属于基础题.4、D【解析】
根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.5、B【解析】
根据题意,构造数列,利用数列求和推出的位置.【详解】根据已知,第行有个数,设数列为行数的数列,则,即第行有个数,第行有个数,……,第行有个数,所以,第行到第行数的总个数,当时,数的总个数,所以,为时的数,即行的数为:,,,,……,所以,为行第列.故选:B.【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.6、B【解析】
根据线面和线线平行与垂直的性质逐个判定即可.【详解】对①,,,不一定有,故不一定成立.故①错误.对②,令为底面为直角三角形的直三棱柱的三个侧面,且,,,但此时,故不一定成立.故②错误.对③,,,,则成立.故③正确.对④,若,,则,或,又,则.故④正确.综上,③④正确.故选:B【点睛】本题主要考查了根据线面、线线平行与垂直的性质判断命题真假的问题,需要根据题意举出反例或者根据判定定理判定,属于中档题.7、C【解析】试题分析:.考点:等差数列的基本概念.8、A【解析】
由以及,结合二倍角的正切公式,可得,根据三角形的内角的范围可得,由余弦定理以及基本不等式可得,再根据面积公式可得答案.【详解】因为,且,所以,所以,则.由于为定值,由余弦定理得,即.根据基本不等式得,即,当且仅当时,等号成立.所以.故选:A【点睛】本题考查了二倍角的正切公式,考查了余弦定理,考查了基本不等式,考查了三角形的面积公式,属于中档题.9、C【解析】
过点且与点距离最大的直线满足:,根据两直线互相垂直,斜率的关系可以求出直线的斜率,写出点斜式方程,最后化成一般方程,选出正确的选项.【详解】因为过点且与点距离最大的直线满足:,所以有,而,所以直线方程为,故本题选C.【点睛】本题考查了直线与直线垂直时斜率的性质,考查了数学运算能力.10、C【解析】
可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【点睛】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.二、填空题:本大题共6小题,每小题5分,共30分。11、①②【解析】
对四个命题分别进行判断即可得到结论【详解】①若,垂足为,与确定平面,,则,,则,,则,故,故正确②若,是在内的射影,,根据三垂线定理,可得,故正确③底面是等边三角形,侧面都是有公共顶点的等腰三角形的三棱锥是正三棱锥,故不正确④若球的表面积扩大为原来的倍,则半径扩大为原来的倍,则球的体积扩大为原来的倍,故不正确其中正确的为①②【点睛】本题主要考查了空间中直线与平面之间的位置关系、球的体积等知识点,数量掌握各知识点然后对其进行判断,较为基础。12、【解析】
利用二次不等式解集与二次方程根的关系,由二次不等式的解集得到二次方程的根,再利用根与系数的关系,得到和的值,得到答案.【详解】因为关于的不等式的解集是,所以关于的方程的解是,由根与系数的关系得,解得,所以.【点睛】本题考查二次不等式解集和二次方程根之间的关系,属于简单题.13、【解析】
由已知利用正弦定理可求,代入“三斜求积”公式即可求得答案.【详解】因为,所以整理可得,由正弦定理得因为,所以所以当时,的面积的最大值为【点睛】本题用到的知识点有同角三角函数的基本关系式,两角和的正弦公式,正弦定理等,考查学生分析问题的能力和计算整理能力.14、-16【解析】
设等差数列的公差为,利用通项公式求出即可.【详解】设等差数列的公差为,得,则.故答案为【点睛】本题考查了等差数列通项公式的应用,属于基础题.15、;【解析】
利用三角换元,设,;利用辅助角公式将化为,根据三角函数值域求得结果.【详解】可设,,本题正确结果:【点睛】本题考查利用三角换元法求解取值范围的问题,关键是能够将问题转化为三角函数值域的求解问题.16、23【解析】
直接利用数量积的坐标表示求解.【详解】由题得.故答案为23【点睛】本题主要考查平面向量的数量积的计算,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)通过,,可得,从而通过可以求出,再确定的值.(2)法一:设(),可以利用基底法将表示为t的函数,然后求得最小值;法二:建立平面直角坐标系,设(),然后表示出相关点的坐标,从而求得最小值.【详解】(1),,,,,即,,(2)法一:设(),则,,当时,即时,最小法二:建立如图平面直角坐标系,则,,,,设(),则,当时,即时,最小.【点睛】本题主要考查向量的数量积运算,数形结合思想及函数思想,意在考查学生的划归能力和分析能力,难度较大.18、(1)12;(2)过定点,理由见解析【解析】
(1)由,得过点的切线长,所以四边形的面积为,即可得到本题答案;(2)设直线的方程为,则直线的方程为.联立方程,消去,整理得,得,,所以,令,即可得到本题答案.【详解】(1)由题意可得圆心到直线的距离为,从而,则过点的切线长.故四边形的面积为,即四边形面积的最小值为12.(2)因为,所以直线与直线的斜率都存在,且不为0.设直线的方程为,则直线的方程为.联立方程,消去,整理得解得或,则.同理可得.所以.令,得,解得.取,可以证得,所以直线过定点.当时,轴,易知与均为正三角形,直线的方程为,也过定点.综上,直线过定点.【点睛】本题主要考查与椭圆相关的四边形面积的范围问题以及与椭圆有关的直线过定点问题,联立直线方程与椭圆方程,利用韦达定理是解决此类问题的常用方法.19、(1),;(2)真命题,证明见解析;(3).【解析】
(1)根据题意直接写出、、的值,可得出结果;(2)分和两种情况讨论,找出使得等式成立的正整数,可得知命题为真命题;(3)先证明出“”是“存在,当时,恒有成立”的充要条件,由此可得出,然后利用定义得出,由此可得出的值.【详解】(1)根据题意知,对任意正整数,为前项、、、中等于的项的个数,因此,,,;(2)真命题,证明如下:①当时,则,,,此时,当时,;②当时,设,则,,,此时,当时,.综上所述,命题为真命题;(3)先证明:“”是“存在,当时,恒有成立”的充要条件.假设存在,使得“存在,当时,恒有成立”.则数列的前项为,,,,,,后面的项顺次为,,,,故对任意的,,对任意的,取,其中表示不超过的最大整数,则,令,则,此时,有,这与矛盾,故若存在,当时,恒有成立,必有;从而得证.另外:当时,数列为,故,则.【点睛】本题考查数列知识的应用,涉及到命题真假的判断,同时也考查了数列新定义问题,解题时要充分从题中数列的定义出发,充分利用分类讨论思想,综合性强,属于难题.20、(1);(2).【解析】
(1)利用诱导公式化简即得;(2)利用同角的平方关系求出的值,即得解.【详解】解:(1).(2)因为,且,所以,所以.【点睛】本题主要考查诱导公式和同角的三角函数求值,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.21、(1)见解析;(2)①;②3.385万元.【解析】
(1)由已知条件利用公式,求得的值,再与比较大小即可得结果;(2)根据所给的数据,做出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某高校图书馆系列工程施工组织设计方案
- 新型节能墙体材料生产线建设项目可研
- 二零二四年度离婚谈判中的财产审计报告合同3篇
- 《诺基亚EDGE规划》课件
- 绝经后卵巢恶性肿瘤病因介绍
- 部编版四年级语文上册《语文园地三》教学设计
- 《客户关系管理实务》电子教案 16实训项目:房地产中介店铺客户关系的选择
- 2025年学校离退休党支部工作计划范文
- 电烧伤病因介绍
- 2024年度房地产买卖合同标的及购房款支付方式5篇
- 中南大学攻防实验室方案
- 明确目标推动团队发展计划
- 《傅雷家书》读书分享
- 椎管内麻醉与治疗课件
- 2024年国家公务员考试《申论》真题(副省级)及答案解析
- 银行发展新质生产力的心得体会范文
- 医院消防维保方案及实施细则
- 福建省厦门市2023-2024学年高一上学期语文期末考试试卷(含答案)
- 厨师培训食品安全和卫生培训考核试卷
- DB15T 435-2020 公路风吹雪雪害防治技术规程
- 北京邮电大学《自然语言理解》2022-2023学年期末试卷
评论
0/150
提交评论