贵州省安顺市平坝区集圣中学2025届高一下数学期末学业水平测试模拟试题含解析_第1页
贵州省安顺市平坝区集圣中学2025届高一下数学期末学业水平测试模拟试题含解析_第2页
贵州省安顺市平坝区集圣中学2025届高一下数学期末学业水平测试模拟试题含解析_第3页
贵州省安顺市平坝区集圣中学2025届高一下数学期末学业水平测试模拟试题含解析_第4页
贵州省安顺市平坝区集圣中学2025届高一下数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省安顺市平坝区集圣中学2025届高一下数学期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列各角中与角终边相同的角是A. B. C. D.2.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获3.在等比数列中,,,则()A. B.C. D.4.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.5.已知正数、满足,则的最小值为()A. B. C. D.6.已知等比数列的首项,公比,则()A. B. C. D.7.已知向量,,则与的夹角为()A. B. C. D.8.在中,内角A,B,C的对边分别为a,b,c,若a,b,c依次成等差数列,,,依次成等比数列,则的形状为()A.等边三角形 B.等腰直角三角形C.钝角三角形 D.直角边不相等的直角三角形9.若直线过两点,,则的斜率为()A. B. C.2 D.10.已知等比数列的前n项和为,若,,则()A. B. C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.计算:______.12.已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=_______13.若点关于直线的对称点在函数的图像上,则称点、直线及函数组成系统,已知函数的反函数图像过点,且第一象限内的点、直线及函数组成系统,则代数式的最小值为________.14.若函数的反函数的图象过点,则________.15.据两个变量、之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系_____(答是与否).16.为等比数列,若,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,分别是角的对边,且.(1)求的大小;(2)若,求的面积.18.已知函数,且.(1)求的值;(2)若在上有且只有一个零点,,求的取值范围.19.已知向量,满足,,且.(1)求;(2)在中,若,,求.20.一扇形的周长为20,当扇形的圆心角等于多少时,这个扇形的面积最大?最大面积是多少?21.若,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据终边相同角的概念,即可判断出结果.【详解】因为,所以与是终边相同的角.故选B【点睛】本题主要考查终边相同的角,熟记有关概念即可,属于基础题型.2、B【解析】

利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【点睛】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.3、B【解析】

设等比数列的公比为,由等比数列的定义知与同号,再利用等比中项的性质可求出的值.【详解】设等比数列的公比为,则,,.由等比中项的性质可得,因此,,故选:B.【点睛】本题考查等比中项性质的应用,同时也要利用等比数列的定义判断出项的符号,考查运算求解能力,属于中等题.4、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.5、B【解析】

由得,再将代数式与相乘,利用基本不等式可求出的最小值.【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选.【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.6、B【解析】

由等比数列的通项公式可得出.【详解】解:由已知得,故选:B.【点睛】本题考查等比数列的通项公式的应用,是基础题.7、D【解析】

利用夹角公式计算出两个向量夹角的余弦值,进而求得两个向量的夹角.【详解】设两个向量的夹角为,则,故.故选:D.【点睛】本小题主要考查两个向量夹角的计算,考查向量数量积和模的坐标表示,属于基础题.8、A【解析】

根据a,b,c依次成等差数列,,,依次成等比数列,利用等差、等比中项的性质可知,根据基本不等式求得a=c,判断出a=b=c,推出结果.【详解】由a,b,c依次成等差数列,有2b=a+c(1)由,,成等比数列,有(2),由(1)(2)得,又根据,当a=c时等号成立,∴可得a=c,∴,综上可得a=b=c,所以△ABC为等边三角形.故选:A.【点睛】本题考查三角形的形状判断,结合等差、等比数列性质及基本不等式关系可得三边关系,从而求解,考查综合分析能力,属于中等题.9、C【解析】

直接运用斜率计算公式求解.【详解】因为直线过两点,,所以直线的斜率,故本题选C.【点睛】本题考查了斜率的计算公式,考查了数学运算能力、识记公式的能力.10、C【解析】

利用等比数列的前项和公式列出方程组,能求出首项.【详解】等比数列的前项和为,,,,解得,.故选:.【点睛】本题考查等比数列的首项的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.12、-1【解析】

分n为偶数和奇数求得数列的奇数项和偶数项均为等差数列,然后利用分组求和得答案.【详解】若n为偶数,则an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶数项为首项为a2=﹣5,公差为﹣4的等差数列;若n为奇数,则an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇数项为首项为a1=3,公差为4的等差数列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案为:1.【点睛】本题考查数列递推式,考查了等差关系的确定,训练了等差数列前n项和的求法,是中档题.13、【解析】

根据函数的反函数图像过点可求出,由、直线及函数组成系统可知在的图象上,且,代入化简为,换元则,利用单调性求解.【详解】因为函数的反函数图像过点,所以,即,由、直线及函数组成系统知在上,所以,代入化简得,令由知,故则在上单调递减,所以当即时,,故填.【点睛】本题主要考查了对称问题,反函数概念,根据条件求最值,函数的单调性,换元法,综合性大,难度大,属于难题.14、【解析】

由反函数的性质可得的图象过,将代入,即可得结果.【详解】的反函数的图象过点,的图象过,故答案为.【点睛】本题主要考查反函数的基本性质,意在考查对基础知识掌握的熟练程度,属于基础题.15、否【解析】

根据散点图的分布来判断出两个变量是否具有线性相关关系.【详解】由散点图可知,散点图分布无任何规律,不在一条直线附近,所以,这两个变量没有线性相关关系,故答案为否.【点睛】本题考查利用散点图判断两变量之间的线性相关关系,考查对散点图概念的理解,属于基础题.16、【解析】

将这两式中的量全部用表示出来,正好有两个方程,两个未知数,解方程组即可求出。【详解】相当于,相当于,上面两式相除得代入就得,【点睛】基本量法是解决数列计算题最重要的方法,即将条件全部用首项和公比表示,列方程,解方程即可求得。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(Ⅰ)先由正弦定理将三角形的边角关系转化为角角关系,再利用两角和的正弦公式和诱导公式进行求解;(Ⅱ)先利用余弦定理求出,再利用三角形的面积公式进行求解.试题解析:(Ⅰ)由又所以.(Ⅱ)由余弦定理有,解得,所以点睛:在利用余弦定理进行求解时,往往利用整体思想,可减少计算量,若本题中的.18、(1)(2)【解析】

(1)利用降次公式、辅助角公式化简表达式,利用求得的值.(2)令,结合的取值范围以及三角函数的零点列不等式,解不等式求得的取值范围.【详解】(1),,,即.(2)令,则,,,在上有且只有一个零点,,,的取值范围为.【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.19、(1)(2)【解析】

(1)将展开得到答案.(2),平方计算得到答案.【详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【点睛】本题考查了向量的夹角,向量的加减计算,意在考查学生的计算能力.20、;;【解析】

设扇形的半径为,弧长为,利用周长关系,表示出扇形的面积,利用二次函数求出面积的最大值,以及圆心角的大小.【详解】设扇形的半径为,弧长为,则,即,扇形的面积,将上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论