2025届北京市石景山区高一数学第二学期期末联考试题含解析_第1页
2025届北京市石景山区高一数学第二学期期末联考试题含解析_第2页
2025届北京市石景山区高一数学第二学期期末联考试题含解析_第3页
2025届北京市石景山区高一数学第二学期期末联考试题含解析_第4页
2025届北京市石景山区高一数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市石景山区高一数学第二学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.2.已知两点,,若点是圆上的动点,则△面积的最小值是A. B.6 C.8 D.3.直线被圆截得的弦长为()A.4 B. C. D.4.当点到直线的距离最大时,m的值为()A.3 B.0 C. D.15.设是数列的前项和,时点在抛物线上,且的首项是二次函数的最小值,则的值为()A.45 B.54 C.36 D.-186.向量,,若,则实数的值为A. B. C. D.7.圆关于直线对称的圆的方程为()A. B.C. D.8.在各项均为正数的等比数列中,公比,若,,,数列的前项和为,则取最大值时,的值为()A. B. C. D.或9.己知x与y之间的几组数据如下表:x0134y1469则y与x的线性回归直线y=A.(2,5) B.(5,9) C.(0,1) D.(1,4)10.已知圆和圆只有一条公切线,若,且,则的最小值为()A.2 B.4 C.8 D.9二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,下列结论中:函数关于对称;函数关于对称;函数在是增函数,将的图象向右平移可得到的图象.其中正确的结论序号为______.12.执行如图所示的程序框图,则输出的S的值是______.13.在中,若,则____;14.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;15.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.16.已知数列满足:,,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中).(1)当时,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.18.已知所在平面内一点,满足:的中点为,的中点为,的中点为.设,,如图,试用,表示向量.19.如图,在四棱锥中,底面,底面为矩形,为的中点,且,,.(1)求证:平面;(2)若点为线段上一点,且,求四棱锥的体积.20.正四面体是侧棱与底面边长都相等的正三棱锥,它的对棱互相垂直.有一个如图所示的正四面体,E,F,G分别是棱AB,BC,CD的中点.(1)求证:面EFG;(2)求异面直线EG与AC所成角的大小.21.如图,函数,其中的图象与y轴交于点.(1)求的值;(2)求函数的单调递增区间;(3)求使的x的集合.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【详解】,因为为锐角三角形,所以,,,故,选B.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.2、A【解析】

求得圆的方程和直线方程以及,利用三角换元假设,利用点到直线距离公式和三角函数知识可求得,代入三角形面积公式可求得结果.【详解】由题意知,圆的方程为:,直线方程为:,即设点到直线的距离:,其中当时,本题正确选项:【点睛】本题考查点到直线距离的最值的求解问题,关键是能够利用三角换元的方式将问题转化为三角函数的最值的求解问题.3、B【解析】

先由圆的一般方程写出圆心坐标,再由点到直线的距离公式求出圆心到直线m的距离d,则弦长等于.【详解】∵,∴,∴圆的圆心坐标为,半径为,又点到直线的距离,∴直线被圆截得的弦长等于.【点睛】本题主要考查圆的弦长公式的求法,常用方法有代数法和几何法;属于基础题型.4、C【解析】

求得直线所过的定点,当和直线垂直时,距离取得最大值,根据斜率乘积等于列方程,由此求得的值.【详解】直线可化为,故直线过定点,当和直线垂直时,距离取得最大值,故,故选C.【点睛】本小题主要考查含有参数的直线过定点的问题,考查点到直线距离的最值问题,属于基础题.5、B【解析】

根据点在抛物线上证得数列是等差数列,由二次函数的最小值求得首项,进而求得的值.【详解】由于时点在抛物线上,所以,所以数列是公差为的等差数列.二次函数,所以.所以.故选:B【点睛】本小题主要考查等差数列的证明,考查二次函数的最值的求法,考查等差数列前项和公式,属于基础题.6、C【解析】

利用向量平行的坐标表示,即可求出.【详解】向量,,,即解得.故选.【点睛】本题主要考查向量平行的坐标表示.7、B【解析】

设圆心关于直线对称的圆的圆心为,则由,求出的值,可得对称圆的方程.【详解】圆的圆心为,半径,则不妨设圆关于直线对称的圆的圆心为,半径为,则由,解得,故所求圆的方程为.故选:B【点睛】本题考查了圆的标准方程、中点坐标公式,需熟记圆的标准形式,属于基础题.8、D【解析】

利用等比数列的性质求出、的值,可求出和的值,利用等比数列的通项公式可求出,由此得出,并求出数列的前项和,然后求出,利用二次函数的性质求出当取最大值时对应的值.【详解】由题意可知,由等比数列的性质可得,解得,所以,解得,,,则数列为等差数列,,,,因此,当或时,取最大值,故选:D.【点睛】本题考查等比数列的性质,同时也考查了等差数列求和以及等差数列前项和的最值,在求解时将问题转化为二次函数的最值求解,考查方程与函数思想的应用,属于中等题.9、A【解析】

分别求出x,y均值即得.【详解】x=0+1+3+44=2,故选A.【点睛】本题考查线性回归直线方程,线性回归直线一定过点(x10、D【解析】

由题意可得两圆相内切,根据两圆的标准方程求出圆心和半径,可得,再利用“1”的代换,使用基本不等式求得的最小值.【详解】解:由题意可得两圆相内切,两圆的标准方程分别为,,圆心分别为,,半径分别为2和1,故有,,,当且仅当时,等号成立,的最小值为1.故选:.【点睛】本题考查两圆的位置关系,两圆相内切的性质,圆的标准方程的特征,基本不等式的应用,得到是解题的关键和难点.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

把化成的型式即可。【详解】由题意得所以对称轴为,对,当时,对称中心为,对。的增区间为,对向右平移得。错【点睛】本题考查三角函数的性质,三角函数变换,意在考查学生对三角函数的图像与性质的掌握情况。12、4【解析】

模拟程序运行,观察变量值的变化,寻找到规律周期性,确定输出结果.【详解】第1次循环:,;第2次循环:,;第3次循环:,;第4次循环:,;…;S关于i以4为周期,最后跳出循环时,此时.故答案为:4.【点睛】本题考查程序框图,考查循环结构.解题关键是由程序确定变量变化的规律:周期性.13、【解析】试题分析:因为,所以.由正弦定理,知,所以==.考点:1、同角三角函数间的基本关系;2、正弦定理.14、【解析】

以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.15、【解析】

正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【点睛】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.16、【解析】

从开始,直接代入公式计算,可得的值.【详解】解:由题意得:,,,,故答案为:.【点睛】本题主要考查数列的递推公式及数列的性质,相对简单.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】

(1)先由,将不等式化为,直接求解,即可得出结果;(2)先由题意得到恒成立,根据含绝对值不等式的性质定理,得到,从而可求出结果.【详解】(1)当时,求不等式,即为,所以,即或,原不等式的解集为或.(2)不等式,即为,即关于的不等式恒成立.而,所以,解得或,解得或.所以的取值范围是.【点睛】本题主要考查含绝对值不等式的解法,以及由不等式恒成立求参数的问题,熟记不等式的解法,以及绝对值不等式的性质定理即可,属于常考题型.18、【解析】

由为的中点,则可得,为的中点,则可得,从中可以求出向量,得到答案.【详解】由为的中点,则可得.又为的中点,所以【点睛】本题考查向量的基本定理和向量的加减法的法则,属于中档题.19、(1)见解析(2)6【解析】

(1)连接交于点,得出点为的中点,利用中位线的性质得出,再利用直线与平面平行的判定定理可得出平面;(2)过作交于,由平面,得出平面,可而出,结合,可证明出平面,可得出,并计算出,利用平行线的性质求出的长,再利用锥体的体积公式可计算出四棱锥的体积.【详解】(1)连接交于,连接.四边形为矩形,∴为中点.又为中点,∴.又平面,平面,∴平面;(2)过作交于.∵平面,∴平面.又平面,∴.∵,,,平面,∴平面.连接,则,又是矩形,易证,而,,得,由得,∴.又矩形的面积为8,∴.【点睛】本题考查直线与平面平行的证明,以及锥体体积的计算,直线与平面平行的证明,常用以下三种方法进行证明:(1)中位线平行;(2)平行四边形对边平行;(3)构造面面平行来证明线面平行.一般遇到中点找中点,根据已知条件类型选择合适的方法证明.20、(1)证明见解析;(2)【解析】

(1)连接EF,FG,GE,通过三角形的中位线可得,进而可得面EFG;(2)由题可得为异面直线EG与AC所成角,根据正四棱锥的特点得到为等腰直角三角形,进而可得结果.【详解】解:(1)连接EF,FG,GE,如图,E,F分别是棱AB,BC的中点,,又面EFG,面EFG,面EFG;(2)由(1),则为异面直线EG与AC所成角,AC与BD是正四面体的对棱,,又,,又,为等腰直角三角形,,即异面直线EG与AC所成角的大小为.【点睛】本题考查线面平行的证明,以及异面直线所成的角,通过直线平行找到异面直线所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论