版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届四川省眉山市车城中学高一下数学期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若、为异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交2.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000m/h,飞行员先看到山顶的俯角为,经过1min后又看到山顶的俯角为,则山顶的海拔高度为(精确到0.1km,参考数据:)A.11.4km B.6.6km C.6.5km D.5.6km3.在中,,,,则()A. B. C. D.4.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④5.下列函数中,既是偶函数,又在上递增的函数的个数是().①;②;③;④向右平移后得到的函数.A. B. C. D.6.等差数列中,若,则=()A.11 B.7 C.3 D.27.已知向量,,若,则与的夹角为()A. B. C. D.8.已知向量,满足,,且在方向上的投影是-1,则实数()A.1 B.-1 C.2 D.-29.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.10.在四边形ABCD中,若,则四边形ABCD一定是()A.正方形 B.菱形 C.矩形 D.平行四边形二、填空题:本大题共6小题,每小题5分,共30分。11.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.12.设函数的最小值为,则的取值范围是___________.13.已知,若直线与直线垂直,则的最小值为_____14.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;15.在中,,则______.16.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知圆经过和两点,若圆心在直线上,求圆的方程;(2)求过点、和的圆的方程.18.如图,在平面四边形中,.(Ⅰ)求;(Ⅱ)若,求.19.已知点,,点为曲线上任意一点且满足(1)求曲线的方程;(2)设曲线与轴交于两点,点是曲线上异于的任意一点,直线分别交直线:于点,试问轴上是否存在一个定点,使得?若存在,求出点的坐标;若不存在,请说明理由.20.已知数列的前项和,满足.(1)若,求数列的通项公式;(2)在满足(1)的条件下,求数列的前项和的表达式;21.已知的顶点,边上的中线所在直线方程为,的平分线所在直线方程为,求:(Ⅰ)顶点的坐标;(Ⅱ)直线的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】解:因为为异面直线,直线,则与的位置关系是异面或相交,选D2、C【解析】
根据题意求得和的长,然后利用正弦定理求得BC,最后利用求得问题答案.【详解】在中,根据正弦定理,所以:山顶的海拔高度为18-11.5=6.5km.故选:C【点睛】本题考查了正弦定理在实际问题中的应用,考查了学生数学应用,转化与划归,数学运算的能力,属于中档题.3、D【解析】
直接用正弦定理直接求解边.【详解】在中,,,由余弦定理有:,即故选:D【点睛】本题考查利用正弦定理解三角形,属于基础题.4、A【解析】
根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.5、B【解析】
将①②③④中的函数解析式化简,分析各函数的奇偶性及其在区间上的单调性,可得出结论.【详解】对于①中的函数,该函数为偶函数,当时,,该函数在区间上不单调;对于②中的函数,该函数为偶函数,且在区间上单调递减;对于③中的函数,该函数为偶函数,且在区间上单调递增;对于④,将函数向右平移后得到的函数为,该函数为奇函数,且当时,,则函数在区间上不单调.故选:B.【点睛】本题考查三角函数单调性与奇偶性的判断,同时也考查了三角函数的相位变换,熟悉正弦、余弦和正切函数的基本性质是判断的关键,考查推理能力,属于中等题.6、A【解析】
根据和已知条件即可得到.【详解】等差数列中,故选A.【点睛】本题考查了等差数列的基本性质,属于基础题.7、D【解析】∵,,⊥,∴,解得.∴.∴,又.设向量与的夹角为,则.又,∴.选D.8、A【解析】
由投影的定义计算.【详解】由题意,解得.故选:A.【点睛】本题考查向量数量积的几何意义,掌握向量投影的定义是解题关键.9、C【解析】
计算结果.【详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【点睛】本题考查了棱柱的体积公式,属于简单题型.10、D【解析】试题分析:因为,根据向量的三角形法则,有,则可知,故四边形ABCD为平行四边形.考点:向量的三角形法则与向量的平行四边形法则.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得.,得,即,故选D.【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角.12、.【解析】
确定函数的单调性,由单调性确定最小值.【详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【点睛】本题考查分段函数的单调性.由单调性确定最小值,13、8【解析】
两直线斜率存在且互相垂直,由斜率乘积为-1求得等式,把目标式子化成,运用基本不等式求得最小值.【详解】设直线的斜率为,,直线的斜率为,,两条直线垂直,,整理得:,,等号成立当且仅当,的最小值为.【点睛】利用“1”的代换,转化成可用基本不等式求最值,考查转化与化归的思想.14、【解析】
根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【点睛】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.15、【解析】
由已知求得,进一步求得,即可求出.【详解】由,得,即,,则,,,则.【点睛】本题主要考查应用两角和的正切公式作三角函数的恒等变换与化简求值.16、【解析】
利用长方体的体对角线是长方体外接球的直径,求出球的半径,从而可得结果.【详解】本题主要考查空间几何体的表面积与体积.长方体的体对角线是长方体外接球的直径,设球的半径为,则,可得,球的表面积故答案为.【点睛】本题主要考查长方体与球的几何性质,以及球的表面积公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由直线AB的斜率,中点坐标,写出线段AB中垂线的直线方程,与直线x-2y-3=0联立即可求出交点的坐标即为圆心的坐标,再根据两点间的距离公式求出圆心到点A的距离即为圆的半径,根据圆心坐标与半径写出圆的标准方程即可;(2)设圆的方程为,代入题中三点坐标,列方程组求解即可【详解】(1)由点和点可得,线段的中垂线方程为.∵圆经过和两点,圆心在直线上,∴,解得,即所求圆的圆心,∴半径,所求圆的方程为;(2)设圆的方程为,∵圆过点、和,∴列方程组得解得,∴圆的方程为.【点睛】本题考查了圆的方程求解,考查了待定系数法及运算能力,属于中档题.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)在中利用余弦定理即可求得结果;(Ⅱ)在中利用正弦定理构造方程即可求得结果.【详解】(Ⅰ)在中,由余弦定理可得:(Ⅱ),在中,由正弦定理可得:,即:解得:【点睛】本题考查利用正弦定理、余弦定理解三角形的问题,考查公式的简单应用,属于基础题.19、(1);(2)存在点使得成立.【解析】
(1)设P(x,y),由|PA|=2|PB|,得=2,由此能求出曲线的方程.(2)由题意得M(0,1),N(0,-1),设点R(x0,y0),(x0≠0),由点R在曲线上,得=1,直线RM的方程,从而直线RM与直线y=3的交点为,直线RN的方程为,从而直线RN与直线y=3的交点为,假设存在点S(0,m),使得成立,则,由此能求出存在点S,使得成立,且S点的坐标为.【详解】(1)设,由,得:,整理得.所以曲线的方程为.(2)由题意得,,.设点,由点在曲线上,所以.直线的方程为,所以直线与直线的交点为.直线的方程为所以直线与直线的交点为.假设存在点,使得成立,则,.即,整理得.因为,所以,解得.所以存在点使得成立,且点的坐标为.【点睛】本题考查曲线方程的求法,考查是否存在满足向量积为0的点的判断与求法,考查圆、直线方程、向量的数量积公式等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.20、(1);(2).【解析】
(1)已知求,利用即可求出;(2)根据数列通项公式特征,采取分组求和法和错位相减法求出【详解】(1)因为,所以,当时,,所以;当时,,即,,因为,所以,,即,当时,也符合公式.综上,数列的通项公式为.(2)因为,所以()由得,两式作差得,,即,故.【点睛】本题主要考查求数列通项的方法——公式法和构造
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年宠物猫养殖协议3篇
- 2024年书法教学合作合同3篇
- 2024年教师职业聘用协议样本版B版
- 2024年FS-L系列柔软剂合作协议书
- 2024年度离婚双方债务清偿协议3篇
- 2024年激光转速测量仪合作协议书
- 2024年合同管理与招投标流程整合方案3篇
- 2024年度工程临时设施建设合同范本3篇
- 2024年度内蒙古电信运营商网络升级改造合同2篇
- 2024年安全型自动门购销合同3篇
- 胸腔镜下肺大泡切除术(特选内容)
- GB/T 750-2024水泥压蒸安定性试验方法
- 案例4:电力系统有功功率
- 研究生考试考研计算机学科专业基础(408)试卷与参考答案(2024年)
- 《人力资源管理》全套教学课件
- 民用无人机操控员执照(CAAC)考试复习重点题库500题(含答案)
- 中国法律史-第一次平时作业-国开-参考资料
- 平安三率知识宣传
- 全国社保行政区域划分代码
- 2022年上海初中生命科学学业考试卷
- 初中体育教案全集(完整版)
评论
0/150
提交评论