北京市石景山区第九中学2025届高一数学第二学期期末监测试题含解析_第1页
北京市石景山区第九中学2025届高一数学第二学期期末监测试题含解析_第2页
北京市石景山区第九中学2025届高一数学第二学期期末监测试题含解析_第3页
北京市石景山区第九中学2025届高一数学第二学期期末监测试题含解析_第4页
北京市石景山区第九中学2025届高一数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市石景山区第九中学2025届高一数学第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,满足,则()A. B. C. D.2.为了解名学生的学习情况,采用系统抽样的方法,从中抽取容量为的样本,则分段的间隔为()A. B. C. D.3.若向量,且,则等于()A. B. C. D.4.已知函数,其函数图像的一个对称中心是,则该函数的单调递增区间可以是()A. B. C. D.5.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为80%”,这是指()A.明天该地区有80%的地方降水,有20%的地方不降水B.明天该地区降水的可能性为80%C.气象台的专家中有80%的人认为会降水,另外有20%的专家认为不降水D.明天该地区有80%的时间降水,其他时间不降水6.在x轴上的截距为2且倾斜角为135°的直线方程为().A.y=-x+2 B.y=-x-2 C.y=x+2 D.y=x-27.若是等差数列,首项,,,则使前n项和成立的最大正整数n=()A.2017 B.2018 C.4035 D.40348.在平行四边形ABCD中,若,则必有()A. B.或C.ABCD是矩形 D.ABCD是正方形9.若等差数列和的公差均为,则下列数列中不为等差数列的是()A.(为常数) B.C. D.10.函数的单调递增区间是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的通项公式,那么使得其前项和大于7.999的的最小值为______.12.等差数列中,,,设为数列的前项和,则_________.13.函数的单调增区间是_________14.若等比数列满足,且公比,则_____.15.若正实数,满足,则的最小值是________.16.已知函数,若对任意都有()成立,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图1,产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将,两种产品的利润表示为投资的函数关系,并写出它们的函数关系式;(2)该企业已筹集到10万元资金,全部投入到,两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).18.如图,在平面四边形中,.(Ⅰ)求;(Ⅱ)若,求.19.对于定义域相同的函数和,若存在实数,使,则称函数是由“基函数,”生成的.(1)若函数是“基函数,”生成的,求实数的值;(2)试利用“基函数,”生成一个函数,且同时满足:①是偶函数;②在区间上的最小值为.求函数的解析式.20.已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切,且被轴截得的弦长为,圆的面积小于13.(1)求圆的标准方程:(2)设过点的直线与圆交于不同的两点,,以,为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程:如果不存在,请说明理由.21.关于的不等式,其中为大于0的常数。(1)若不等式的解集为,求实数的取值范围;(2)若不等式的解集为,且中恰好含有三个整数,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【详解】已知,=,>0,进而得到.故答案为A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.2、C【解析】试题分析:由题意知,分段间隔为,故选C.考点:本题考查系统抽样的定义,属于中等题.3、B【解析】

根据坐标形式下向量的平行对应的等量关系,即可计算出的值,再根据坐标形式下向量的加法即可求解出的坐标表示.【详解】因为且,所以,所以,所以.故选:B.【点睛】本题考查根据坐标形式下向量的平行求解参数以及向量加法的坐标运算,难度较易.已知,若则有.4、D【解析】

根据对称中心,结合的范围可求得,从而得到函数解析式;将所给区间代入求得的范围,与的单调区间进行对应可得到结果.【详解】为函数的对称中心,解得:,当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时单调递增,正确本题正确选项:【点睛】本题考查正切型函数单调区间的求解问题,涉及到利用正切函数的对称中心求解函数解析式;关键是能够采用整体对应的方式,将正切型函数与正切函数进行对应,从而求得结果.5、B【解析】

降水概率指的是降水的可能性,根据概率的意义作出判断即可.【详解】“明天降水的概率为80%”指的是“明天该地区降水的可能性是80%”,且明天下雨的可能性比较大,故选:B.【点睛】本题主要考查了概率的意义,掌握概率是反映出现的可能性大小的量是解题的关键,属于基础题.6、A【解析】直线的斜率为tan135°=-1,由点斜式求得直线的方程为y=-x+b,将截据y=0,x=2代入方程,解得b=2,所以,可得y=-x+2,故答案为A7、D【解析】

由等差数列的性质可得,,由等差数列前项和公式可得则,,得解.【详解】解:由是等差数列,又,所以,又首项,,则,,则,,即使前n项和成立的最大正整数,故选:D.【点睛】本题考查了等差数列的性质,重点考查了等差数列前项和公式,属中档题.8、C【解析】

由,化简可得,得到,又由四边形为平行四边形,即可得到答案.【详解】由,则,即,化简可得,所以,即,又由四边形为平行四边形,所以该四边形为矩形,故选C.【点睛】本题主要考查了向量的基本运算,以及向量的垂直关系的应用,其中解答中熟记向量的基本运算,以及向量的垂直的判定是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解析】

利用等差数列的定义对选项逐一进行判断,可得出正确的选项.【详解】数列和是公差均为的等差数列,则,,.对于A选项,,数列(为常数)是等差数列;对于B选项,,数列是等差数列;对于C选项,,所以,数列是等差数列;对于D选项,,不是常数,所以,数列不是等差数列.故选:D.【点睛】本题考查等差数列的定义和通项公式,注意等差数列定义的应用,考查推理能力,属于中等题.10、A【解析】

先求出所有的单调递增区间,然后与取交集即可.【详解】因为令得:所以的单调递增区间是因为,所以即函数的单调递增区间是故选:A【点睛】求形如的单调区间时,一般利用复合函数的单调性原理“同增异减”来求出此函数的单调区间,当时,需要用诱导公式将函数转化为.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

直接利用数列的通项公式,建立不等式,解不等式求出结果.【详解】解:数列的通项公式,则:,所以:当时,即:,当时,成立,即:的最小值为1.故答案为:1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,主要考查学生的运算能力和转化能力,属于基础题型.12、【解析】

由等差数列的性质可得出的值,然后利用等差数列的求和公式可求出的值.【详解】由等差数列的基本性质可得,因此,.故答案为:.【点睛】本题考查等差数列求和,同时也考查了等差数列基本性质的应用,考查计算能力,属于基础题.13、,【解析】

令,即可求得结果.【详解】令,解得:,所以单调递增区间是,故填:,【点睛】本题考查了型如:单调区间的求法,属于基础题型.14、.【解析】

利用等比数列的通项公式及其性质即可得出.【详解】,故答案为:1.【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.15、【解析】

将配凑成,由此化简的表达式,并利用基本不等式求得最小值.【详解】由得,所以.当且仅当,即时等号成立.故填:.【点睛】本小题主要考查利用基本不等式求和式的最小值,考查化归与转化的数学思想方法,属于中档题.16、【解析】

根据和的取值特点,判断出两个值都是最值,然后根据图象去确定最小值.【详解】因为对任意成立,所以取最小值,取最大值;取最小值时,与必为同一周期内的最小值和最大值的对应的,则,且,故.【点睛】任何一个函数,若有对任何定义域成立,此时必有:,.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为,为;(2)产品投入3.75万元,产品投入6.25万元,最大利润为4万元【解析】

(1)根据题意给出的函数模型,设;代入图中数据求得既得,注意自变量;(2)设产品投入万元,则产品投入万元,设企业利润为万元.,列出利润函数为,用换元法,设,变化为二次函数可求得利润的最大值.【详解】解:(1)设投资为万元,产品的利润为万元,产品的利润为万元由题设知;由图1知,由图2知,则,.(2)设产品投入万元,则产品投入万元,设企业利润为万元.,,令,则则当时,,此时所以当产品投入3.75万元,产品投入6.25万元,企业获得最大利润为4万元.【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)在中利用余弦定理即可求得结果;(Ⅱ)在中利用正弦定理构造方程即可求得结果.【详解】(Ⅰ)在中,由余弦定理可得:(Ⅱ),在中,由正弦定理可得:,即:解得:【点睛】本题考查利用正弦定理、余弦定理解三角形的问题,考查公式的简单应用,属于基础题.19、(1).(2)【解析】

(1)根据基函数的定义列方程,比较系数后求得的值.(2)设出的表达式,利用为偶函数,结合偶函数的定义列方程,化简求得,由此化简的表达式,构造函数,利用定义法证得在上的单调性,由此求得的最小值,也即的最小值,从而求得的最小值,结合题目所给条件,求出的值,即求得的解析式.【详解】解:(1)由已知得,即,得,所以.(2)设,则.由,得,整理得,即,即对任意恒成立,所以.所以.设,,令,则,任取,且则,因为,且所以,,,故即,所以在单调递增,所以,且当时取到“”.所以,又在区间的最小值为,所以,且,此时,所以【点睛】本小题主要考查新定义函数的理解和运用,考查函数的单调性、奇偶性的运用,考查利用定义法证明函数的单调性,考查化归与转化的数学思想方法,考查函数与方程的思想,综合性较强,属于中档题.20、(1).(2)不存在这样的直线.【解析】

试题分析:(I)用待定系数法即可求得圆C的标准方程;(Ⅱ)首先考虑斜率不存在的情况.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2).l与圆C相交于不同的两点,那么Δ>0.由题设及韦达定理可得k与x1、x2之间关系式,进而求出k的值.若k的值满足Δ>0,则存在;若k的值不满足Δ>0,则不存在.试题解析:(I)设圆C:(x-a)2+y2=R2(a>0),由题意知解得a=1或a=,又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x-1)2+y2=1.(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立消去y得:(1+k2)x2+(6k-2)x+6=0,∴Δ=(6k-2)2-21(1+k2)=3k2-6k-5>0,解得或.x1+x2=,y1+y2=k(x1+x2)+6=,,,假设∥,则,∴,解得,假设不成立.∴不存在这样的直线l.考点:1、圆的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论