版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届东北四市一模试题高一下数学期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象是()A. B. C. D.2.在△ABC中,,则A等于()A.30° B.60° C.120° D.150°3.已知函数,若方程在上有且只有三个实数根,则实数的取值范围为()A. B. C. D.4.中,下列结论:①若,则,②,③,④若是锐角三角形,则,其中正确的个数是()A.1 B.2 C.3 D.45.已知集合A={x|x2﹣x﹣2<0},B={x|≥﹣1},则A∪B=()A.(﹣1,2) B.(﹣1,2] C.(0,1) D.(0,2)6.已知,,,则的最小值是()A. B.4 C.9 D.57.以两点A(-3,-1)和B(5,5)为直径端点的圆的标准方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=258.若,,,点C在AB上,且,设,则的值为()A. B. C. D.9.2019年是新中国成立70周年,涡阳县某中学为庆祝新中国成立70周年,举办了“我和我的祖国”演讲比赛,某选手的6个得分去掉一个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场制作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以表示,则4个剩余分数的方差为()A.1 B. C.4 D.610.以下说法正确的是()A.零向量与单位向量的模相等B.模相等的向量是相等向量C.已知均为单位向量,若,则与的夹角为D.向量与向量是共线向量,则四点在一条直线上二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足(),且,,__.12.记为等差数列的前项和,若,则___________.13.已知,则的值为________.14.已知函数,有以下结论:①若,则;②在区间上是增函数;③的图象与图象关于轴对称;④设函数,当时,.其中正确的结论为__________.15.如图,长方体中,,,,与相交于点,则点的坐标为______________.16.若A(-2,3),B(3,-2),C(4,m)三点共线则m的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)化简;(2)若,求的值.18.已知二次函数满足以下要求:①函数的值域为;②对恒成立。求:(1)求函数的解析式;(2)设,求时的值域。19.如图,在中,,四边形是边长为的正方形,平面平面,若,分别是的中点.(1)求证:平面;(2)求证:平面平面;(3)求几何体的体积.20.已知,是第四象限角,求和的值.21.在中,角对应的边分别是,且.(1)求角;(2)若,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
求出分段函数的解析式,由此确定函数图象.【详解】由于,根据函数解析式可知,D选项符合.故选:D【点睛】本小题主要考查分段函数图象的判断,属于基础题.2、C【解析】
试题分析:考点:余弦定理解三角形3、A【解析】
先辅助角公式化简,先求解方程的根的表达式,再根据在上有且只有三个实数根列出对应的不等式求解即可.【详解】.又在上有且只有三个实数根,故,解得或,即或,.设直线与在上从做到右的第三个交点为,第四个交点为.则,.故.故实数的取值范围为.故选:A【点睛】本题主要考查了根据三角函数的根求解参数范围的问题,需要根据题意先求解根的解析式,进而根据区间中的零点个数列出区间端点满足的关系式求解即可.属于中档题.4、C【解析】
根据正弦定理与诱导公式,以及正弦函数的性质,逐项判断,即可得出结果.【详解】①在中,因为,所以,所以,故①正确;②,故②正确;③,故③错误;④若是锐角三角形,则,均为锐角,因为正弦函数在上单调递增,所以,故④正确;故选C【点睛】本题主要考查命题真假的判定,熟记正弦定理,诱导公式等即可,属于常考题型.5、B【解析】
先分别求出集合A和B,由此能求出A∪B.【详解】∵集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|≥﹣1}={x|0<x≤2},∴A∪B={x|﹣1<x≤2}=(﹣1,2].故选B.【点睛】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.6、C【解析】
利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的最小值.【详解】∵,,,∴=,当且仅当,即时等号成立.故选:C.【点睛】本题主要考查了基本不等式求最值,注意一定,二正,三相等的原则,属于基础题.7、D【解析】分析:由条件求出圆心坐标和半径的值,从而得出结论.详解:圆心坐标为(1,2),半径r==5,故所求圆的标准方程为(x-1)2+(y-2)2=25.故选D.点睛:本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于基础题.8、B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.9、B【解析】
由题意得x≥3,由此能求出4个剩余数据的方差.【详解】由题意得x≥3,则4个剩余分数的方差为:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故选B.【点睛】本题考查了方差的计算问题,也考查了茎叶图的性质、平均数、方差等基础知识,是基础题.10、C【解析】
根据零向量、单位向量、相等向量,向量的模、向量共线、向量数量积的运算的知识分析选项,由此确定正确选项.【详解】对于A选项,零向量的模是,单位向量的模是,两者不相等,故A选项说法错误.对于B选项,两个向量大小和方向都相等才是相等向量,故B选项说法错误.对于C选项,由,故C选项说法正确.对于D选项,向量与向量是共线向量,但是这两个向量没有公共点,所以无法判断是否在一条直线上.故D选项说法错误.故选:C【点睛】本小题主要考查向量的有关概念,考查向量数量积的运算,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
由数列满足,即,得到数列的奇数项和偶数项分别构成公比为的等比数列,利用等比数列的极限的求法,即可求解.【详解】由题意,数列满足,即,又由,,所以数列的奇数项构成首项为1,公比为,偶数项构成首项为,公比为的等比数列,当为奇数时,可得,当为偶数时,可得.所以.故答案为:1.【点睛】本题主要考查了等比数列的定义,以及无穷等比数列的极限的计算,其中解答中得出数列的奇数项和偶数项分别构成公比为的等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.12、100【解析】
根据题意可求出首项和公差,进而求得结果.【详解】得【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.13、【解析】
由题意利用诱导公式求得的值,可得要求式子的值.【详解】,则,故答案为:.【点睛】本题主要考查诱导公式的应用,属于基础题.14、②③④【解析】
首先化简函数解析式,逐一分析选项,得到答案.【详解】①当时,函数的周期为,,或,所以①不正确;②时,,所以是增函数,②正确;③函数还可以化简为,所以与关于轴对称,正确;④,当时,,,④正确故选②③④【点睛】本题考查了三角函数的化简和三角函数的性质,属于中档题型.15、【解析】
易知是的中点,求出的坐标,根据中点坐标公式求解.【详解】可知,,由中点坐标公式得的坐标公式,即【点睛】本题考查空间直角坐标系和中点坐标公式,空间直角坐标的读取是易错点.16、-3【解析】
根据三点共线与斜率的关系即可得出.【详解】kAB=-2-33-(-2)=-1,k∵A(-2,3),B(3,-2),C(4,m)三点共线,∴﹣1=-3-m6,解得m=故答案为-3.【点睛】本题考查了三点共线与斜率的关系,考查了推理能力与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)直接利用诱导公式化简求解即可;(2)由(1)可求出,然后利用同角三角函数的基本关系式将化成只含有的表达式,代入即可求解.【详解】(1)(2)因为,所以,由于将代入,得【点睛】本题主要考查诱导公式以及同角三角函数基本关系式的应用,意在考查学生的数学建模能力和运算能力.18、(1);(2)【解析】
(1)将写成顶点式,然后根据最小值和对称轴进行分析;(2)先将表示出来,然后利用换元法以及对勾函数的单调性求解值域.【详解】解:(1)∵又∵∴对称轴为∵值域为∴且∴,,则函数(2)∵∵∴令,则∴∵∴,则所求值域为【点睛】对于形如的函数,其单调增区间是:和,单调减区间是:和.19、(1)详见解析(2)详见解析(2)【解析】
试题分析:(1)如图,连接EA交BD于F,利用正方形的性质、三角形的中位线定理、线面平行的判定定理即可证明.(2)利用已知可得:FG⊥平面EBC,可得∠FBG就是线BD与平面EBC所成的角.经过计算即可得出.(3)利用体积公式即可得出.试题解析:(1)如图,连接,易知为的中点.因为,分别是和的中点,所以,因为平面,平面,所以平面.(2)证明:因为四边形为正方形,所以.又因为平面平面,所以平面.所以.又因为,所以.所以平面.从而平面平面.(3)取AB中点N,连接,因为,所以,且.又平面平面,所以平面.因为是四棱锥,所以.即几何体的体积.点睛:本题考查了正方形的性质、线面,面面平行垂直的判定与性质定理、三棱锥的体积计算公式、线面角的求法,考查了推理能力与计算能力,属于中档题.20、,【解析】
利用诱导公式可求的值,根据是第四象限角可求的值,最后根据三角函数的基本关系式可求的值,根据诱导公式及倍角公式可求的值.【详解】,又是第四象限角,所以,所以,.【点睛】本题考查同角的三角函数的基本关系式、诱导公式以及二倍角公式,此题属
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论