版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
赣湘粤三省六校2025届高一数学第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系中,已知四边形是平行四边形,,,则()A. B. C. D.2.已知,则的值等于()A. B. C. D.3.在中,,,是边的中点.为所在平面内一点且满足,则的值为()A. B. C. D.4.若正数满足,则的最小值为A. B.C. D.35.将函数的图象上各点沿轴向右平移个单位长度,所得函数图象的一个对称中心为()A. B. C. D.6.方程的解集是()A. B.C. D.7.已知,,且,则向量在向量上的投影等于()A.-4 B.4 C. D.8.已知点到直线的距离为1,则的值为()A. B. C. D.9.若过点,的直线与直线平行,则的值为()A.1 B.4 C.1或3 D.1或410.某小吃店的日盈利(单位:百元)与当天平均气温(单位:℃)之间有如下数据:/℃/百元对上述数据进行分析发现,与之间具有线性相关关系,则线性回归方程为()参考公式:A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在Rt△ABC中,∠B=90°,BC=6,AB=8,点M为△ABC内切圆的圆心,过点M作动直线l与线段AB,AC都相交,将△ABC沿动直线l翻折,使翻折后的点A在平面BCM上的射影P落在直线BC上,点A在直线l上的射影为Q,则的最小值为_____.12.设向量,且,则__________.13.已知直线与轴、轴相交于两点,点在圆上移动,则面积的最大值和最小值之差为.14.设数列满足,且,则数列的前n项和_______________.15.设为内一点,且满足关系式,则________.16.设向量,,______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定点,点A在圆上运动,M是线段AB上的一点,且,求出点M所满足的方程,并说明方程所表示的曲线是什么.18.求经过点且分别满足下列条件的直线的一般式方程.(1)倾斜角为45°;(2)在轴上的截距为5;(3)在第二象限与坐标轴围成的三角形面积为4.19.在中,角所对的边分别为.(1)若,求角的大小;(2)若是边上的中线,求证:.20.在中,角的对边分别为,的面积是30,.(1)求;(2)若,求的值.21.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的面积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.2、B【解析】.3、D【解析】
根据平面向量基本定理可知,将所求数量积化为;由模长的等量关系可知和为等腰三角形,根据三线合一的特点可将和化为和,代入可求得结果.【详解】为中点和为等腰三角形,同理可得:本题正确选项:【点睛】本题考查向量数量积的求解问题,关键是能够利用模长的等量关系得到等腰三角形,从而将含夹角的运算转化为已知模长的向量的运算.4、A【解析】
由,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则,当且仅当,即时等号成立,所以的最小值为,故选A.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理构造,利用基本不是准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5、A【解析】
先求得图象变换后的解析式,再根据正弦函数对称中心,求出正确选项.【详解】向右平移的单位长度,得到,由解得,当时,对称中心为,故选A.【点睛】本小题主要考查三角函数图象变换,考查三角函数对称中心的求法,属于基础题.6、C【解析】
把方程化为,结合正切函数的性质,即可求解方程的解,得到答案.【详解】由题意,方程,可化为,解得,即方程的解集为.故答案为:C.【点睛】本题主要考查了三角函数的基本关系式,以及三角方程的求解,其中解答中熟记正切函数的性质,准确求解是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解析】
根据公式,向量在向量上的投影等于,计算求得结果.【详解】向量在向量上的投影等于.故选A.【点睛】本题考查了向量的投影公式,只需记住公式代入即可,属于基础题型.8、D【解析】
根据点到直线的距离公式列式求解参数即可.【详解】由题,,因为,故.故选:D【点睛】本题主要考查了点到线的距离公式求参数的问题,属于基础题.9、A【解析】
首先设一条与已知直线平行的直线,点,代入直线方程即可求出的值.【详解】设与直线平行的直线:,点,代入直线方程,有.故选:A.【点睛】本题考查了利用直线的平行关系求参数,属于基础题.注意直线与直线在时相互平行.10、B【解析】
计算出,,把数据代入公式计算,即可得到答案.【详解】由题可得:,,,,;所以,,则线性回归方程为;故答案选B【点睛】本题考查线性回归方程的求解,考查学生的计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、825【解析】
以AB,BC所在直线为坐标轴建立平面直角坐标系,设直线l的斜率为k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【详解】过点M作△ABC的三边的垂线,设⊙M的半径为r,则r2,以AB,BC所在直线为坐标轴建立平面直角坐标系,如图所示,则M(2,2),A(0,8),因为A在平面BCM的射影在直线BC上,所以直线l必存在斜率,过A作AQ⊥l,垂足为Q,交直线BC于P,设直线l的方程为:y=k(x﹣2)+2,则|AQ|,又直线AQ的方程为:yx+8,则P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①当k>﹣3时,4(k+3)25≥825,当且仅当4(k+3),即k3时取等号;②当k<﹣3时,则4(k+3)23≥823,当且仅当﹣4(k+3),即k3时取等号.故答案为:825【点睛】本题考查了考查空间距离的计算,考查基本不等式的运算,意在考查学生对这些知识的理解掌握水平.12、【解析】因为,所以,故答案为.13、15【解析】
解:设作出与已知直线平行且与圆相切的直线,
切点分别为,如图所示
则动点C在圆上移动时,若C与点重合时,
△ABC面积达到最小值;而C与点重合时,△ABC面积达到最大值
∵直线3x+4y−12=0与x轴、y轴相交于A(4,0)、B(0,3)两点
可得∴△ABC面积的最大值和最小值之差为
,
其中分别为点、点到直线AB的距离
∵是圆(x−5)2+(y−6)2=9的两条平行切线与圆的切点
∴点、点到直线AB的距离之差等于圆的直径,即
因此△ABC面积的最大值和最小值之差为
故答案为:1514、【解析】令15、【解析】
由题意将已知中的向量都用为起点来表示,从而得到32,分别取AB、AC的中点为D、E,可得2,利用平面知识可得S△AOB与S△AOC及S△BOC与S△ABC的关系,可得所求.【详解】∵,∴32,∴2,分别取AB、AC的中点为D、E,∴2,∴S△AOBS△ABFS△ABCS△ABC;S△AOCS△ACFS△ABCS△ABC;S△BOCS△ABC,∴故答案为:.【点睛】本题考查向量的加减法运算,体现了数形结合思想,解答本题的关键是利用向量关系画出助解图形.16、【解析】
利用向量夹角的坐标公式即可计算.【详解】.【点睛】本题主要考查了向量夹角公式的坐标运算,属于容易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、;方程所表示的曲线是以为圆心,为半径的圆.【解析】
设出点的坐标,结合向量的关系式及圆的方程可求.【详解】设,,因为,所以;,,因为点A在圆上运动,所以;化简得;方程所表示的曲线是以为圆心,为半径的圆.【点睛】本题主要考查曲线方程的求解,相关点法是常用的方法,侧重考查数学运算的核心素养.18、(1)(2)(3)【解析】
(1)利用斜率和倾斜角的关系,可以求出斜率,可以用点斜式写出直线方程,最后化为一般方程;(2)设出直线的斜截式方程,把点代入方程中求出斜率,进而可求出方程,化为一般式方程即可;(3)设出直线的截距式方程,利用面积公式和已知条件,可以求出所设参数,即可求出直线方程,化为一般式即可.【详解】(1)因为直线的倾斜角为45°,所以斜率,代入点斜式,即.(2)因为直线在轴上的截距是5,所以设直线方程为:,代入点得,故直线方程为.(3)设所求直线方程为则,即,解之得,,所以直线方程为,即.【点睛】本题考查了利用点斜式、截距式、斜截式求直线方程,正确选择方程的形式是解题的关键.19、(1);(2)见解析【解析】
(1)已知三边的关系且有平方,考虑化简式子构成余弦定理即可。(2)观察结论形似余弦定理,通过,则互补,则余弦值互为相反数联系。【详解】(1)∵,∴∴由余弦定理,得,∴∵,∴,∵,∴(2)设,,则在中,由余弦定理,得在中,同理,得∵,∴,∵,∴,∴【点睛】解三角形要注意观察题干条件所给的形式,出现边长平方一般会考虑用到余弦定理。正弦定理和余弦定理是我们解三角形的两大常用工具,需要熟练运用。20、(1)144;(2)5.【解析】
(1)由同角的三角函数关系,由,可以求出的值,再由面积公式可以求出的值,最后利用平面向量数量积的公式求出的值;(2)由(1)可知的值,再结合已知,可以求出的值,由余弦定理可以求出的值.【详解】(1),又因为的面积是30,所以,因此(2)由(1)可知,与联立,组成方程组:,解得或,不符合题意舍去,由余弦定理可知:.【点睛】本题考查了同角的三角函数关系、三角形面积公式、余弦定理、平面向量的数量积运算,本题求,可以不求出的值也可以,计算如下:21、(1);(2).【解析】
(1)根据正弦定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度艺术品交易合同
- 《基于哈佛分析框架下的ZC公司财务分析研究》
- 《“咪蒙”微信公众号女性性别观涵化效果研究》
- 《基于聚类主成分回归法的半导体企业价值评估研究》
- 《Graves病患者131I治疗前后外周血单个核细胞中miR-155、Th17水平的变化及意义》
- 《大学生野外生存生活训练教育价值的质的研究》
- 《集体土地所有权确权制度研究》
- 人教部编版六年级语文上册习作《学写倡议书》精美课件
- 2024年新乡客运上岗证模拟考试题答案
- 2024年滨州小型客运从业资格证理论考试答案
- 初中数学基于大单元的作业设计
- 小学一年级下册数学期末考试质量分析及试卷分析
- 原材料情况说明范本
- 相邻企业间安全管理协议
- 装饰装修工程售后服务具体措施
- 乙炔发生器、电石库安全检查表
- 克拉申监控理论述评
- ICH技术指导原则概述
- (完整版)一年级家长会PPT模板
- 《中华商业文化》第七章
- 15D503利用建筑物金属体做防雷及接地装置安装图集
评论
0/150
提交评论