版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市重点初中2025届高一数学第二学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆心为且过原点的圆的一般方程是A. B.C. D.2.执行如图所示的程序框图,若输入的,则输出A. B. C. D.3.在四边形ABCD中,若,则四边形ABCD一定是()A.正方形 B.菱形 C.矩形 D.平行四边形4.不等式>0的解集是()A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)5.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,则()A. B. C. D.6.若函数在一个周期内的图象如图所示,且在轴上的截距为,分别是这段图象的最高点和最低点,则在方向上的投影为()A. B. C. D.7.已知,,下列不等式成立的是()A. B.C. D.8.在中,已知其面积为,则=()A. B. C. D.9.的值等于()A. B. C. D.10.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,≤)的图象如下,则点的坐标是()A.(,) B.(,)C.(,) D.(,)二、填空题:本大题共6小题,每小题5分,共30分。11.设偶函数的部分图像如图所示,为等腰直角三角形,,则的值为________.12.数列满足,则等于______.13.为了研究问题方便,有时将余弦定理写成:,利用这个结构解决如下问题:若三个正实数,满足,,,则_______.14.在△ABC中,sin2A=sin15.已知向量,满足,与的夹角为,则在上的投影是;16.若关于的不等式有解,则实数的取值范围为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角的对边分别为,已知.(1)求;(2)若,求边上的高的长.18.设,求函数的最小值为__________.19.某校为了了解学生每天平均课外阅读的时间(单位:分钟),从本校随机抽取了100名学生进行调查,根据收集的数据,得到学生每天课外阅读时间的频率分布直方图,如图所示,若每天课外阅读时间不超过30分钟的有45人.(Ⅰ)求,的值;(Ⅱ)根据频率分布直方图,估计该校学生每天课外阅读时间的中位数及平均值(同一组中的数据用该组区间的中点值代表).20.如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面(I)证明:平面AEC⊥平面BED;(II)若∠ABC=120∘,AE⊥EC,三棱锥E-ACD的体积为21.已知对任意,恒成立(其中),求的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据题意,求出圆的半径,即可得圆的标准方程,变形可得其一般方程。【详解】根据题意,要求圆的圆心为,且过原点,且其半径,则其标准方程为,变形可得其一般方程是,故选.【点睛】本题主要考查圆的方程求法,以及标准方程化成一般方程。2、B【解析】
首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】由流程图可知,程序输出的值为:,即.故选B.【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.3、D【解析】试题分析:因为,根据向量的三角形法则,有,则可知,故四边形ABCD为平行四边形.考点:向量的三角形法则与向量的平行四边形法则.4、A【解析】
由题意可得,,求解即可.【详解】,解得或,故解集为(-,0)(1,+),故选A.【点睛】本题考查了分式不等式的解法,考查了计算能力,属于基础题.5、D【解析】
由题意得到,再由两角差的余弦及同角三角函数的基本关系式化简求解.【详解】解:∵角与角均以Ox为始边,它们的终边关于y轴对称,
∴,
,
故选:D.【点睛】本题考查了两角差的余弦公式的应用,是基础题.6、D【解析】
根据图象求出函数的解析式,然后求出点的坐标,进而可得所求结果.【详解】根据函数在一个周期内的图象,可得,∴.再根据五点法作图可得,∴,∴函数的解析式为.∵该函数在y轴上的截距为,∴,∴,故函数的解析式为.∴,∴,又,∴向量在方向上的投影为.故选D.【点睛】解答本题的关键有两个:一是正确求出函数的解析式,进而得到两点的坐标,此处要灵活运用“五点法”求出的值;二是注意一个向量在另一个向量方向上的投影的概念,属于基础题.7、A【解析】
由作差法可判断出A、B选项中不等式的正误;由对数换底公式以及对数函数的单调性可判断出C选项中不等式的正误;利用指数函数的单调性可判断出D选项中不等式的正误.【详解】对于A选项中的不等式,,,,,,,,A选项正确;对于B选项中的不等式,,,,,,,B选项错误;对于C选项中的不等式,,,,,,,即,C选项错误;对于D选项中的不等式,,函数是递减函数,又,所以,D选项错误.故选A.【点睛】本题考查不等式正误的判断,常见的比较大小的方法有:(1)比较法;(2)中间值法;(3)函数单调性法;(4)不等式的性质.在比较大小时,可以结合不等式的结构选择合适的方法来比较,考查推理能力,属于中等题.8、C【解析】或(舍),故选C.9、C【解析】
根据特殊角的三角函数值,得到答案.【详解】.故选C项.【点睛】本题考查特殊角的三角函数值,属于简单题.10、C【解析】
由函数f(x)的部分图象求得A、T、ω和φ的值即可.【详解】由函数f(x)=Asin(ωx+φ)的部分图象知,A=2,T=2×(4﹣1)=6,∴ω,又x=1时,y=2,∴φ2kπ,k∈Z;∴φ2kπ,k∈Z;又0<φ,∴φ,∴点P(,).故选C.【点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】的部分图象如图所示,为等腰直角三角形,,,函数是偶函数,,函数的解析式为,故答案为.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求使解题的关键.求解析时求参数是确定函数解析式的关键,往往利用特殊点求的值,由特殊点求时,一定要分清特殊点是“五点法”的第几个点.12、15【解析】
先由,可求出,然后由,代入已知递推公式即可求解。【详解】故答案为15.【点睛】本题考查是递推公式的应用,是一道基础题。13、【解析】
设的角、、的对边分别为、、,在内取点,使得,设,,,利用余弦定理得出的三边长,由此计算出的面积,再利用可得出的值.【详解】设的角、、的对边分别为、、,在内取点,使得,设,,,由余弦定理得,,同理可得,,,则,的面积为,另一方面,解得,故答案为.【点睛】本题考查余弦定理的应用,问题的关键在于将题中的等式转化为余弦定理,并转化为三角形的面积来进行计算,考查化归与转化思想以及数形结合思想,属于中等题.14、π【解析】
根据正弦定理化简角的关系式,从而凑出cosA【详解】由正弦定理得:a2=则cos∵A∈0,π本题正确结果:π【点睛】本题考查利用正弦定理和余弦定理解三角形问题,属于基础题.15、1【解析】考查向量的投影定义,在上的投影等于的模乘以两向量夹角的余弦值16、【解析】
利用判别式可求实数的取值范围.【详解】不等式有解等价于有解,所以,故或,填.【点睛】本题考查一元二次不等式有解问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)首先由正弦定理,我们可以将条件化成角度问题,再通过两角和差的正弦公式,即可以得出的正切值,又因为在三角形中,从而求出的值.(2)由第一问得出,我们能求出,而,从而求出.【详解】(1)根据题意因为,所以得,即所以,又因为所以.(2)因为所以又的面积为:可得:【点睛】解三角形题中,我们常根据边的齐次,会利用正弦定理进行边化角,然后通过恒等变形,变成角相关等量关系,作为面积问题,我们初中更多是用底与高的处理,高中能用正弦形式表示,两者统一一起,又能得出相应的等量关系.18、9【解析】试题分析:本题解题的关键在于关注分母,充分运用发散性思维,经过同解变形构造基本不等式,从而求出最小值.试题解析:由得,则当且仅当时,上式取“=”,所以.考点:基本不等式;构造思想和发散性思维.19、(Ⅰ);(Ⅱ)中位数估计值为32,平均数估计值为32.5.【解析】
(Ⅰ)由频率分布直方图的性质列出方程组,能求出,;(Ⅱ)由频率分布直方图,能估计该校学生每天课外阅读时间的中位数及平均值.【详解】(Ⅰ)由题意得,解得(Ⅱ)设该校学生每天课外阅读时间的中位数估计值为,则解得:.该校学生每天课外阅读时间的平均数估计值为:.答:该校学生每天课外阅读时间的中位数估计值为32,平均数估计值为32.5.【点睛】本题考查频率、中位数、平均数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.20、(1)见解析(2)3+25【解析】试题分析:(Ⅰ)由四边形ABCD为菱形知AC⊥BD,由BE⊥平面ABCD知AC⊥BE,由线面垂直判定定理知AC⊥平面BED,由面面垂直的判定定理知平面AEC⊥平面BED;(Ⅱ)设AB=x,通过解直角三角形将AG、GC、GB、GD用x表示出来,在RtΔAEC中,用x表示EG,在RtΔEBG中,用x表示EB,根据条件三棱锥E-ACD的体积为63求出x,即可求出三棱锥E-ACD试题解析:(Ⅰ)因为四边形ABCD为菱形,所以AC⊥BD,因为BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x因为AE⊥EC,所以在RtΔAEC中,可得EG=32x由BE⊥平面ABCD,知ΔEBG为直角三角形,可得BE=22由已知得,三棱锥E-ACD的体积VE-ACD=1从而可得AE=EC=ED=6.所以ΔEAC的面积为3,ΔEAD的面积与ΔECD的面积均为5.故三棱锥E-ACD的侧面积为3+考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力21、的最大值为.【解析】试题分析:利用二倍角公式,利用换元法,将原不等式转化为二次不等式在区间上恒成立,利用二次函数的零点分布进行讨论,从而得出的最大值,但是在对时的情况下,主要对二次函数的对称轴是否在区间进行分类讨论,再将问题转化为的条件下,求的最大值,试题解析:由题意知,令,,则当,恒成立,开口向上,①当时,,不满足,恒成立,②当时,则必有(1)当对称轴时,即,也
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 演讲稿《我有一个梦想》(8篇)
- 老师国旗下演讲稿材料范文5篇
- 污水处理厂深度处理改造(一级 )可行性论证报告
- 工程安全演讲稿5篇范文
- 教育类书籍读书笔记300字范文三篇
- 清障车雇佣合同范本
- 肉牛认养协议合法吗
- 山林界线合同协议
- 青春是用来奋斗的演讲稿(5篇)
- 转租合同应注意法律问题
- 小学一年级下册数学期末考试质量分析及试卷分析
- 原材料情况说明范本
- 相邻企业间安全管理协议
- 装饰装修工程售后服务具体措施
- 乙炔发生器、电石库安全检查表
- 克拉申监控理论述评
- ICH技术指导原则概述
- (完整版)一年级家长会PPT模板
- 《中华商业文化》第七章
- 15D503利用建筑物金属体做防雷及接地装置安装图集
- 消防训练工作研讨材料
评论
0/150
提交评论