版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省苏州新区实验中学高一数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是等差数列,且,,则()A.-5 B.-11 C.-12 D.32.已知四面体中,,分别是,的中点,若,,与所成角的度数为30°,则与所成角的度数为()A.90° B.45° C.60° D.30°3.与直线垂直于点的直线的一般方程是()A. B. C. D.4.一组数平均数是,方差是,则另一组数,的平均数和方差分别是()A. B.C. D.5.设a,b,c表示三条不同的直线,M表示平面,给出下列四个命题:其中正确命题的个数有()①若a//M,b//M,则a//b;②若b⊂M,a//b,则a//M;③若a⊥c,b⊥c,则a//b;④若a//c,b//c,则a//b.A.0个 B.1个 C.2个 D.3个6.在中,边,,分别是角,,的对边,且满足,若,则的值为A. B. C. D.7.不等式组所表示的平面区域的面积为()A.1 B. C. D.8.某中学高一从甲、乙两个班中各选出7名学生参加2019年第三十届“希望杯”全国数学邀请赛,他们取得成绩的茎叶图如图,其中甲班学生成绩的平均数是84,乙班学生成绩的中位数是83,则的值为()A.4 B.5 C.6 D.79.已知四棱锥中,平面平面,其中为正方形,为等腰直角三角形,,则四棱锥外接球的表面积为()A. B. C. D.10.设实数满足约束条件,则的最大值为()A. B.4 C.5 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,则的最大值为_______.12.已知sin=,则cos=________.13.在等差数列中,公差不为零,且、、恰好为某等比数列的前三项,那么该等比数列公比的值等于____________.14.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.15.在平行四边形中,为与的交点,,若,则__________.16.方程组的增广矩阵是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在三棱柱中,平面ABC,,,D,E分别为AB,中点.(Ⅰ)求证:平面;(Ⅱ)求证:四边形为平行四边形;(Ⅲ)求证:平面平面.18.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.19.已知动点到定点的距离与到定点的距离之比为.(1)求动点的轨迹的方程;(2)过点作轨迹的切线,求该切线的方程.20.在平面直角坐标系中,已知圆的方程为,过点的直线与圆交于两点,.(1)若,求直线的方程;(2)若直线与轴交于点,设,,,R,求的值.21.如图,在平面四边形中,,,的面积为.⑴求的长;⑵若,,求的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由是等差数列,求得,则可求【详解】∵是等差数列,设,∴故故选:B【点睛】本题考查等差数列的通项公式,考查计算能力,是基础题2、A【解析】
取的中点,利用三角形中位线定理,可以得到,与所成角为,运用三角形中位线定理和正弦定理,可以求出的大小,也就能求出与所成角的度数.【详解】取的中点连接,如下图所示:因为,分别是,的中点,所以有,因为与所成角的度数为30°,所以,与所成角的大小等于的度数.在中,,故本题选A.【点睛】本题考查了异面直线所成角的求法,考查了正弦定理,取中点利用三角形中位线定理是解题的关键.3、A【解析】由已知可得这就是所求直线方程,故选A.4、B【解析】
直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.5、B【解析】
由空间直线的位置关系及空间直线与平面的位置关系逐一判断即可得解.【详解】解:对于①,若a//M,b//M,则a//b或与相交或与异面,即①错误;对于②,若b⊂M,a//b,则a//M或a⊂M,即②错误;对于③,若a⊥c,b⊥c,则a//b或与相交或与异面,即③错误;对于④,若a//c,b//c,由空间直线平行的传递性可得a//b,即④正确,即正确命题的个数有1个,故选:B.【点睛】本题考查了空间直线的位置关系,重点考查了空间直线与平面的位置关系,属基础题.6、A【解析】
利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得的值,由可得的值【详解】在中,由正弦定理可得化为:即在中,,故,可得,即故选【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题。7、D【解析】
画出可行域,根据边界点的坐标计算出平面区域的面积.【详解】画出可行域如下图所示,其中,故平面区域为三角形,且三角形面积为,故选D.【点睛】本小题主要考查线性规划可行域面积的求法,考查数形结合的数学思想方法,属于基础题.8、C【解析】
由均值和中位数定义求解.【详解】由题意,,由茎叶图知就是中位数,∴,∴.故选C.【点睛】本题考查茎叶图,考查均值与中位数,解题关键是读懂茎叶图.9、D【解析】
因为为等腰直角三角形,,故,则点到平面的距离为,而底面正方形的中心到边的距离也为,则顶点正方形中心的距离,正方形的外接圆的半径为,故正方形的中心是球心,则球的半径为,所以该几何体外接球的表面积,应选D.10、A【解析】
作出可行域,作出目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当直线过点时,得最大值为,故选:A.【点睛】本题考查简单的线性规划,解题关键是作出可行域和目标函数对应的直线.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
计算出,利用辅助角公式进行化简,并求出的最大值,可得出的最大值.【详解】,,,所以,,当且仅当,即当,等号成立,因此,的最大值为,故答案为.【点睛】本题考查平面向量模的最值的计算,涉及平面向量数量积的坐标运算以及三角恒等变换思想的应用,考查分析问题和解决问题的能力,属于中等题.12、【解析】
由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案为.13、4【解析】
由题意将表示为的方程组求解得,即可得等比数列的前三项分别为﹑、,则公比可求【详解】由题意可知,,又因为,,代入上式可得,所以该等比数列的前三项分别为﹑、,所以.故答案为:4【点睛】本题考查等差等比数列的基本量计算,考查计算能力,是基础题14、0.5【解析】
由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【点睛】本题主要考查了对立事件的概率,属于基础题.15、【解析】
根据向量加法的三角形法则逐步将待求的向量表示为已知向量.【详解】由向量的加法法则得:所以,所以故填:【点睛】本题考查向量的线性运算,属于基础题.16、【解析】
理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【详解】由题意,方程组的增广矩阵为其系数以及常数项构成的矩阵,故方程组的增广矩阵是.故答案为:【点睛】本题考查了二元一次方程组与增广矩阵的关系,需理解增广矩阵的涵义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解析】
(Ⅰ)只需证明,,即可得平面;(Ⅱ)可得四边形为平行四边形,,,即可得四边形为平行四边形;(Ⅲ)易得平面,即可得平面平面.【详解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分别为、的中点,∴,,即四边形为平行四边形,∴,,∴四边形为平行四边形.(Ⅲ)∵,为中点,∴,又∵,且,∴平面,而平面,∴平面平面.【点睛】本题考查了空间点、线、面位置关系,属于基础题.18、(1),;(2).【解析】
(1)将函数化简,利用三角函数的取值范围的单调性得到答案.(2)通过函数计算,,再计算代入数据得到答案.【详解】(1)∵且∴故所求值域为由得:所求减区间:;(2)∵是的三个内角,,∴∴又,即又∵,∴,故,故.【点睛】本题考查了三角函数的最值,单调性,角度的大小,意在考查学生对于三角函数公式性质的灵活运用.19、(1),(2)或【解析】
(1)首先根据题意列出等式,再化简即可得到轨迹方程.(2)首先根据题意设出切线方程,再利用圆心到切线的距离等于半径即可求出切线方程.【详解】(1)设,有题知,,所以点的轨迹的方程:.(2)当切线斜率不存在时,切线为圆心到的距离,舍去.当切线斜率存在时,设切线方程为.圆心到切线的距离,解得:或.即切线方程为:或.【点睛】本题第一问考查了圆的轨迹方程,第二问考查了直线与圆的位置关系中的切线问题,属于中档题.20、(1)(2)【解析】
(1)设斜率为,则直线的方程为,利用圆的弦长公式,列出方程求得的值,即可得到直线的方程;(2)当直线的斜率不存在时,根据向量的运算,求得,当直线的斜率存在时,设直线的方程为,联立方程组,利用根与系数的关系,以及向量的运算,求得,得到答案.【详解】(1)当直线的斜率不存在时,,不符合题意;当直线的斜率存在时,设斜率为,则直线的方程为,所以圆心到直线的距离,因为,所以,解得,所以直线的方程为..(2)当直线的斜率不存在时,不妨设,,,因为,,所以,,所以,,所以.当直线的斜率存在时,设斜率为,则直线的方程为:,因为直线与轴交于点,所以.直线与圆交于点,,设,,由得,,所以,;因为,,所以,,所以,,所以.综上,.【点睛】本题主要考查了直线与圆的位置关系的应用,以及向量的坐标运算,其中解答中熟记圆的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026福建福州福清市城关幼儿园招聘笔试备考题库及答案解析
- 2026福建泉州市培元中学招聘顶岗教师的笔试备考试题及答案解析
- 2026广东江门市台山市塘田水库管理所招聘工作人员2人笔试备考试题及答案解析
- 2026重庆建工集团工程管理中心招聘4人笔试备考试题及答案解析
- 2026江西新余三中春季学期临聘教师招聘笔试备考题库及答案解析
- 2026广西来宾市忻城县民政局城镇公益性岗位人员招聘1人笔试备考试题及答案解析
- 2026年新余学院高层次人才引进预笔试备考题库及答案解析
- 2026黑龙江齐齐哈尔市龙沙区湖滨街道公益性岗位招聘1人笔试备考试题及答案解析
- 2026福建浦开集团有限公司、福建浦盛产业发展集团有限公司、福建浦丰乡村发展集团有限公司社会招聘30人笔试备考试题及答案解析
- 成都市龙泉驿区中医医院招聘36人笔试备考题库及答案解析
- GB/T 20513.1-2025光伏系统性能第1部分:监测
- 2025年ESG广告的危机公关价值
- 社区工作者岗前培训
- 2026年普通高中学业水平合格性考试政治必背知识点考点提纲
- 2025年及未来5年中国税收信息化未来发展趋势分析及投资规划建议研究报告
- 光伏支架销售基本知识培训课件
- 火炬设计计算书
- 2025-2026学年人教版(2024)七年级地理第一学期第一章 地球 单元测试(含答案)
- 宇树科技在智能家居控制系统的研发
- 应急救援装备项目实施承诺及质量保障方案
- 传染性疾病影像学课件
评论
0/150
提交评论