




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆市部分区县数学高一下期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的前n项和为,且满足,则()A.1 B. C. D.20162.已知点到直线的距离为1,则的值为()A. B. C. D.3.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是,,,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()A. B. C. D.4.已知函数,在中,内角的对边分别是,内角满足,若,则的周长的取值范围为()A. B. C. D.5.以为圆心,且与两条直线,都相切的圆的标准方程为()A. B.C. D.6.在△ABC中,角A,B,C所对的边分别为a,b,c,若a﹣b=ccosB﹣ccosA,则△ABC的形状为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形7.已知某数列的前项和(为非零实数),则此数列为()A.等比数列 B.从第二项起成等比数列C.当时为等比数列 D.从第二项起的等比数列或等差数列8.已知函数f(x)是定义在上的奇函数,当x>0时,f(x)=2x-3,则A.14B.-114C.9.某公司的班车在和三个时间点发车.小明在至之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过分钟的概率是()A. B. C. D.10.函数的定义域是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若、分别是方程的两个根,则______.12.函数在内的单调递增区间为____.13.函数的定义域记作集合,随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数,,,),记骰子向上的点数为,则事件“”的概率为________.14.若,则_________.15.不等式的解集是_________________16.设函数满足,当时,,则=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,,且、都是第二象限角,求的值.(2)求证:.18.已知等差数列中,,,数列中,,其前项和满足:.(1)求数列、的通项公式;(2)设,求数列的前项和.19.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.20.已知函数的图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相;(2)求函数在区间上的最大值和最小值,并指出取得最值时的的值.21.16种食品所含的热量值如下:111123123164430190175236430320250280160150210123(1)求数据的中位数与平均数;(2)用这两种数字特征中的哪一种来描述这个数据集更合适?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用和关系得到数列通项公式,代入数据得到答案.【详解】已知数列的前n项和为,且满足,相减:取答案选C【点睛】本题考查了和关系,数列的通项公式,意在考查学生的计算能力.2、D【解析】
根据点到直线的距离公式列式求解参数即可.【详解】由题,,因为,故.故选:D【点睛】本题主要考查了点到线的距离公式求参数的问题,属于基础题.3、B【解析】
由题意,可先求得三个人都没有被录取的概率,接下来求至少有一人被录取的概率,利用对立事件的概率公式,求得结果.【详解】甲、乙、丙三人都没有被录取的概率为,所以三人中至少有一人被录取的概率为,故选B.【点睛】该题考查的是有关概率的求解问题,关键是掌握对立事件的概率加法公式,求得结果.4、B【解析】
首先根据降幂公式以及辅助角公式化简,把带入利用余弦定理以及基本不等式即可.【详解】由题意得,为三角形内角所以,所以,因为,所以,,当且仅当时取等号,因为,所以,所以选择B【点睛】本题主要考查了三角函数的化简,以及余弦定理和基本不等式.在化简的过程中常用到的公式有辅助角、二倍角、两角和与差的正弦、余弦等.属于中等题.5、C【解析】
由题意有,再求解即可.【详解】解:设圆的半径为,则,则,即圆的标准方程为,故选:C.【点睛】本题考查了点到直线的距离公式,重点考查了运算能力,属基础题.6、D【解析】
用正弦定理化边为角,再由诱导公式和两角和的正弦公式化简变形可得.【详解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故选:D.【点睛】本题考查正弦定理,考查三角形形状的判断.解题关键是诱导公式的应用.7、D【解析】
设数列的前项和为,运用数列的递推式:当时,,当时,,结合等差数列和等比数列的定义和通项公式,即可得到所求结论.【详解】设数列的前项和为,对任意的,(为非零实数).当时,;当时,.若,则,此时,该数列是从第二项起的等差数列;若且,不满足,当时,,此时,该数列是从第二项起的等比数列.综上所述,此数列为从第二项起的等比数列或等差数列.故选:D.【点睛】本题考查数列的递推式的运用,等差数列和等比数列的定义和通项公式,考查分类讨论思想和运算能力,属于中档题.8、D【解析】试题分析:函数f(x)是定义在上的奇函数,,故答案为D.考点:奇函数的应用.9、A【解析】
根据题意得小明等车时间不超过分钟的总的时间段,再由比值求得.【详解】小明等车时间不超过分钟,则他需在至到,或至到,共计分钟,所以概率故选A.【点睛】本题考查几何概型,关键找到满足条件的时间段,属于基础题.10、A【解析】
利用复合函数求定义域的方法求出函数的定义域.【详解】令x+(k∈Z),解得:x(k∈Z),故函数的定义域为{x|x,k∈Z}故选A.【点睛】本题考查的知识要点:正切函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【详解】由韦达定理得,,因此,.故答案为:.【点睛】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.12、【解析】
将函数进行化简为,求出其单调增区间再结合,可得结论.【详解】解:,递增区间为:,可得,在范围内单调递增区间为。故答案为:.【点睛】本题考查了正弦函数的单调区间,属于基础题。13、【解析】要使函数有意义,则且,即且,即,随机地投掷一枚质地均匀的正方体骰子,记骰子向上的点数为,则,则事件“”的概率为.14、【解析】
利用诱导公式求解即可【详解】,故答案为:【点睛】本题考查诱导公式,是基础题15、【解析】
可先求出一元二次方程的两根,即可得到不等式的解集.【详解】由于的两根分别为:,,因此不等式的解集是.【点睛】本题主要考查一元二次不等式的求解,难度不大.16、【解析】
由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出结果.【详解】∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx,当0≤x<π时,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案为:.【点睛】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)利用同角三角函数间的关系式的应用,可求得cosα,sinβ,再利用两角差的正弦、余弦与正切公式即可求得cos(α﹣β)的值.(2)利用切化弦结合二倍角公式化简即可证明【详解】(1)∵sinα,cosβ,且α、β都是第二象限的角,∴cosα,sinβ,∴cos(α﹣β)=cosαcosβ+sinαsinβ;(2)得证【点睛】本题考查两角和与差的正弦、余弦与正切,考查同角三角函数间的关系式的应用,属于中档题.18、(1)(2)【解析】试题分析:(1)对于求得首项和公差即可求得数列的通项公式,对于,利用递推关系求解数列的通项公式即可;(2)利用数列的特点错位相减求解数列的前n项和即可.试题解析:(I)①②①-②得,为等比数列,(II)由两式相减,得点睛:一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.19、(1)a+b=2;(2)(5,-3).【解析】
(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,∴,∴,解得,∴点的坐标为.【点睛】本题考查向量共线的应用,解题的关键是把共线表示为向量的坐标的形式,进而转化为数的运算的问题,属于基础题.20、(1)函数的解析式为,其振幅是2,初相是(2)时,函数取得最大值0;时,函数取得最小值勤-2【解析】
(1)根据图像写出,由周期求出,再由点确定的值.(2)根据的取值范围确定的取值范围,再由的单调求出最值【详解】(1)由图象知,函数的最大值为2,最小值为-2,∴,又∵,∴,,∴.∴函数的解析式为.∵函数的图象经过点,∴,∴,又∵,∴.故函数的解析式为,其振幅是2,初相是.(2)∵,∴.于是,当,即时,函数取得最大值0;当,即时,函数取得最小值为-2.【点睛】本题考查由图像确定三角函数、给定区间求三角函数的最值,属于基础题.21、(1)中位数为:,平均数为:;(2)用平均数描述这个数据更合适.【解析】
(1)根据中位数和平均数的定义计算即可;(2)根据平均数和平均数的优缺点进行选
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拖轮应急协议合同
- 展期协议是主合同的补充
- 员工签劳动合同协议书
- 招生协议合同
- 业务转让合同协议
- 酒店鲜花协议合同
- 个人股份投资合同协议书
- 买房过户协议合同范本
- 商品寄卖协议合同
- 智能办公室装修协议合同
- 2024安徽省徽商集团有限公司招聘若干人笔试参考题库附带答案详解
- 2024-2025学年人教版七年级生物下册知识点总结
- 中央2024年国家药品监督管理局中国食品药品检定研究院招聘笔试历年参考题库真题考点解题思路附带答案详解
- 《电力建设工程施工安全管理导则》(NB∕T 10096-2018)
- 2024年行政执法考试题库及答案(题)
- 3 春夜喜雨课件(共16张PPT)
- DB32∕T 3921-2020 居住建筑浮筑楼板保温隔声工程技术规程
- [推选]高墩翻模施工技术PPT课件
- 现代住宅风水全解(含文字及图解)(课堂PPT)
- Q∕GDW 12131-2021 干扰源用户接入电网电能质量评估技术规范
- 美标管壁厚等级表
评论
0/150
提交评论