北京市清华附中2025届高一下数学期末复习检测模拟试题含解析_第1页
北京市清华附中2025届高一下数学期末复习检测模拟试题含解析_第2页
北京市清华附中2025届高一下数学期末复习检测模拟试题含解析_第3页
北京市清华附中2025届高一下数学期末复习检测模拟试题含解析_第4页
北京市清华附中2025届高一下数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市清华附中2025届高一下数学期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列,前项和为,,则()A.140 B.280 C.168 D.562.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.153.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是()A.1 B.-2 C.1或-2 D.4.如图,在中,,用向量,表示,正确的是A. B.C. D.5.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.记动点P是棱长为1的正方体的对角线上一点,记.当为钝角时,则的取值范围为()A. B. C. D.7.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.38.在直角坐标系中,已知点,则的面积为()A. B.4 C. D.89.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.510.在△ABC中,AB=,AC=1,,△ABC的面积为,则()A.30° B.45° C.60° D.75°二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量、满足||=2,且与的夹角等于,则||的最大值为_____.12.把函数的图像上各点向右平移个单位,再把横坐标变为原来的一半,纵坐标扩大到原来的4倍,则所得的函数的对称中心坐标为________13.如果,,则的值为________(用分数形式表示)14.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.15.已知为等差数列,,,,则______.16.等比数列中,若,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,求的边上的中线所在的直线方程.18.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.19.已知的三个内角的对边分别是,且.(1)求角的大小;(2)若的面积为,求的周长.20.已知函数.(1)求函数的定义域;(2)当为何值时,等式成立?21.年北京市进行人口抽样调查,随机抽取了某区居民人,记录他们的年龄,将数据分成组:,,,…,并整理得到如下频率分布直方图:(Ⅰ)从该区中随机抽取一人,估计其年龄不小于的概率;(Ⅱ)估计该区居民年龄的中位数(精确到);(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,估计该区居民的平均年龄.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由等差数列的性质得,,其前项之和为,故选A.2、C【解析】

抽取比例为,,抽取数量为20,故选C.3、A【解析】

分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求.【详解】①当时,两直线分别为和,此时两直线相交,不合题意.②当时,两直线的斜率都存在,由直线平行可得,解得.综上可得.故选A.【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且.4、C【解析】

由得,再由向量的加法得,最后把代入,求得答案.【详解】因为,故选C.【点睛】本题考查向量的加法和数乘运算的几何意义,考查平面向量基本定理在图形中的应用.5、D【解析】

根据三角函数图象的平移变换可直接得到图象变换的过程.【详解】因为,所以向右平移个单位即可得到的图象.故选:D.【点睛】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.6、B【解析】

建立空间直角坐标系,利用∠APC不是平角,可得∠APC为钝角等价于cos∠APC<0,即

,从而可求λ的取值范围.【详解】

由题设,建立如图所示的空间直角坐标系D-xyz,

则有A(1,0,0),B(1,1,0),C(0,1,0),(0,0,1)

=(1,1,-1),∴

=(λ,λ,-λ),

=

+

=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1)

=

+

=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1)

显然∠APC不是平角,所以∠APC为钝角等价于cos∠APC<0

∴(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)(λ-1)=(λ-1)(3λ-1)<0,得

<λ<1

因此,λ的取值范围是(

,1),故选B.

点评:本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于中档题.7、C【解析】

根据给定的程序框图,逐次循环计算,即可求解,得到答案.【详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【点睛】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.8、B【解析】

求出直线AB的方程及点C到直线AB的距离d,再求出,代入即可得解.【详解】,即,点到直线的距离,,的面积为:.故选:B【点睛】本题考查直线的点斜式方程,点到直线的距离与两点之间的距离公式,属于基础题.9、D【解析】

由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.10、C【解析】

试题分析:由三角形面积公式得,,所以.显然三角形为直角三角形,且,所以.考点:解三角形.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

在中,令,可得,可得点在半径为的圆上,,可得,进而可得的最大值.【详解】∵向量、满足||=1,且与的夹角等于,如图在中,令,,可得可得点B在半径为R的圆上,1R4,R=1.则||的最大值为1R=4【点睛】本题考查了向量的夹角、模的运算,属于中档题.12、,【解析】

根据三角函数的图象变换,求得函数的解析式,进而求得函数的对称中心,得到答案.【详解】由题意,把函数的图像上各点向右平移个单位,可得,再把图象上点的横坐标变为原来的一半,可得,把函数纵坐标扩大到原来的4倍,可得,令,解得,所以函数的对称中心为.故答案为:.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的对称中心的求解,其中解答中熟练三角函数的图象变换,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】

先求出,可得,再代值计算即可.【详解】.故答案为:【点睛】本题考查了等差数列的前项和公式、累乘相消法,考查了学生的计算能力,属于基础题.14、②③⑤【解析】

将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【点睛】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.15、【解析】

由等差数列的前项和公式,代入计算即可.【详解】已知为等差数列,且,,所以,解得或(舍)故答案为【点睛】本题考查了等差数列前项和公式的应用,属于基础题.16、【解析】

设的首项为,公比为,根据,列出方程组,求出和即可得解.【详解】设的首项为,公比为,则:,解之得,所以:.故答案为:.【点睛】本题考查等比数列中某项的求法,解题关键是根据题意列出方程组,需要注意的是为了简化运算不用直接求解,解出即可,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

设边的中点,则由中点公式可得:,即点坐标为所以边上的中线先的斜率则由直线的斜截式方程可得:这就是所求的边上的中线所在的直线方程.18、(1)(2)(3)【解析】解:⑴,椭圆方程为,∴左、右焦点坐标为.⑵,椭圆方程为,设,则∴时;时.⑶设动点,则∵当时,取最小值,且,∴且解得.19、(1);(2)【解析】

(1)通过正弦定理得,进而求出,再根据,进而求得的大小;(2)由正弦定理中的三角形面积公式求出,再根据余弦定理,求得,进而求得的周长.【详解】(1)由题意知,由正弦定理得,又由,则,所以,又因为,则,所以.(2)由三角形的面积公式,可得,解得,又因为,解得,即,所以,所以的周长为【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.20、(1);(2).【解析】

(1)根据对数的真数大于零,得出,解出该不等式即可得出函数的定义域;(2)根据对数的运算性质可得出关于的方程,解出即可.【详解】(1)由,得,所以,函数定义域为;(2)由,得,即,可得:,即,即,或,由于,得,所以,不合题意,所以,当时,等式成立.【点睛】本题考查了对数运算以及简单的对数方程的求解,解题时不要忽略真数大于零这一条件的限制,考查运算求解能力,属于基础题.21、(Ⅰ)(Ⅱ)(Ⅲ)【解析】

(I)计算之间的频率和,由此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论