




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省樟村中学2025届数学高一下期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,已知,,,则的形状为()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定2.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A. B. C. D.3.设等比数列的公比为,其前项的积为,并且满足条件:;给出下列论:①;②;③值是中最大值;④使成立的最大自然数等于198.其中正确的结论是()A.①③ B.①④ C.②③ D.②④4.数列{an}满足a1=1,an+1=2an+1(n∈N+),那么a4的值为().A.4 B.8 C.15 D.315.若函数,又,,且的最小值为,则正数的值是()A. B. C. D.6.已知圆,圆,分别为圆上的点,为轴上的动点,则的最小值为()A. B. C. D.7.设函数是定义为R的偶函数,且对任意的,都有且当时,,若在区间内关于的方程恰好有3个不同的实数根,则的取值范围是()A. B. C. D.8.在中,内角、、所对的边分别为、、,且,则下列关于的形状的说法正确的是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定9.某几何体的三视图如图所示,则该几何体的表面积是()A.2 B. C. D.1210.一个几何体的三视图如图所示,则几何体的体积是()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.12.关于的不等式的解集是,则______.13.一组数据2,4,5,,7,9的众数是2,则这组数据的中位数是_________.14.在中,若,点,分别是,的中点,则的取值范围为___________.15.当时,不等式成立,则实数k的取值范围是______________.16.若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,(1)若,求;(2)若,求.18.已知定义域为的函数是奇函数.(Ⅰ)求实数的值;(Ⅱ)判断函数的单调性,并用定义加以证明.19.已知,函数,,(1)证明:是奇函数;(2)如果方程只有一个实数解,求a的值.20.已知平面向量(1)若,求;(2)若,求与夹角的余弦值.21.已知中,角的对边分别为.已知,.(Ⅰ)求角的大小;(Ⅱ)设点满足,求线段长度的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由正弦定理得出,从而得出可能为钝角或锐角,分类讨论这两种情况,结合正弦函数的单调性即可判断.【详解】由正弦定理得可能为钝角或锐角当为钝角时,,符合题意,所以为钝角三角形;当为锐角时,由于在区间上单调递增,则,所以,即为钝角三角形综上,为钝角三角形故选:A【点睛】本题主要考查了利用正弦定理判断三角形的形状,属于中档题.2、B【解析】试题分析:因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为,故选B.【考点】几何概型【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3、B【解析】
利用等比数列的性质及等比数列的通项公式判断①正确;利用等比数列的性质及不等式的性质判断②错误;利用等比数列的性质判断③错误;利用等比数列的性质判断④正确,,从而得出结论.【详解】解:由可得又即由,即,结合,所以,,即,,即,即①正确;又,所以,即,即②错误;因为,即值是中最大值,即③错误;由,即,即,又,即,即④正确,综上可得正确的结论是①④,故选:B.【点睛】本题考查了等比数列的性质及不等式的性质,重点考查了运算能力,属中档题.4、C【解析】试题分析:,,,故选C.考点:数列的递推公式5、D【解析】,由,得,,由,得,则,当时,取得最小值,则,解得,故选D.6、D【解析】
求出圆关于轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆的圆心距减去两个圆的半径和,即可求得的最小值,得到答案.【详解】如图所示,圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,,半径为3,由图象可知,当三点共线时,取得最小值,且的最小值为圆与圆的圆心距减去两个圆的半径之和,即,故选D.【点睛】本题主要考查了圆的对称圆的方程的求解,以及两个圆的位置关系的应用,其中解答中合理利用两个圆的位置关系是解答本题的关键,着重考查了数形结合法,以及推理与运算能力,属于基础题.7、D【解析】∵对于任意的x∈R,都有f(x−2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.又∵当x∈[−2,0]时,f(x)=−1,且函数f(x)是定义在R上的偶函数,若在区间(−2,6]内关于x的方程恰有3个不同的实数解,则函数y=f(x)与y=在区间(−2,6]上有三个不同的交点,如下图所示:又f(−2)=f(2)=3,则对于函数y=,由题意可得,当x=2时的函数值小于3,当x=6时的函数值大于3,即<3,且>3,由此解得:<a<2,故答案为(,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解8、B【解析】
利用三角形的正、余弦定理判定.【详解】在中,内角、、所对的边分别为、、,且,由正弦定理得,得,则,为直角三角形.故选B【点睛】本题考查了三角形正弦定理的应用,属于基础题.9、C【解析】
由该几何体的三视图可知该几何体为底面是等腰直角三角形的直棱柱,再结合棱柱的表面积公式求解即可.【详解】解:由该几何体的三视图可知,该几何体为底面是等腰直角三角形的直棱柱,又由图可知底面等腰直角三角形的直角边长为1,棱柱的高为1,则该几何体的表面积是,故选:C.【点睛】本题考查了几何体的三视图,重点考查了棱柱的表面积公式,属基础题.10、C【解析】
由三视图知几何体为三棱锥,且三棱锥的高为,底面是直角边长分别为1,的直角三角形,代入体积公式计算可得答案.【详解】解:由三视图知几何体为三棱锥,且三棱锥的高为,底面是直角边长分别为1,的直角三角形,∴三棱柱的体积V.故选:C.【点睛】本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及数据所对应的几何量.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】甲、乙两人下棋,只有三种结果,甲获胜,乙获胜,和棋;甲不输,即甲获胜或和棋,甲不输的概率为12、【解析】
利用二次不等式解集与二次方程根的关系,由二次不等式的解集得到二次方程的根,再利用根与系数的关系,得到和的值,得到答案.【详解】因为关于的不等式的解集是,所以关于的方程的解是,由根与系数的关系得,解得,所以.【点睛】本题考查二次不等式解集和二次方程根之间的关系,属于简单题.13、【解析】
根据众数的定义求出的值,再根据中位数的定义进行求解即可.【详解】因为一组数据2,4,5,,7,9的众数是2,所以,这一组数据从小到大排列为:2,2,4,5,7,9,因此这一组数据的中位数为:.故答案为:【点睛】本题考查了众数和中位数的定义,属于基础题.14、【解析】
记,,,根据正弦定理得到,再由题意,得到,,推出,再由题意,确定的范围,即可得出结果.【详解】记,,,由得,所以,即,因此,因为,分别是,的中点,所以,同理:,所以,因为且,所以,则,所以,则,所以.即的取值范围为.故答案为【点睛】本题主要考查解三角形,熟记正弦定理,以及两角和的正弦公式即可,属于常考题型.15、k∈(﹣∞,1]【解析】
此题先把常数k分离出来,再构造成再利用导数求函数的最小值,使其最小值大于等于k即可.【详解】由题意知:∵当0≤x≤1时(1)当x=0时,不等式恒成立k∈R(2)当0<x≤1时,不等式可化为要使不等式恒成立,则k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵当0<x≤1时,g'(x)<0∴g(x)为单调递减函数∴g(x)<g(0)=0∴f'(x)<0即函数f(x)为单调递减函数所以f(x)min=f(1)=1即k≤1综上所述,由(1)(2)得k≤1故答案为:k∈(﹣∞,1].【点睛】本题主要考查利用导数求函数的最值,属于中档题型.16、【解析】
先求出扇形的半径,再求这个圆心角所夹的扇形的面积.【详解】设扇形的半径为R,由题得.所以扇形的面积为.故答案为:【点睛】本题主要考查扇形的半径和面积的计算,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3;(2)或【解析】
(1)由,得,又由,即可得到本题答案;(2)由,得,即,由此即可得到本题答案.【详解】解:(1)由,得,即,(2)由,得,即,又,解得或.【点睛】本题主要考查平面向量与三角函数求值的综合问题,齐次式法求值是解决此类问题的常用方法.18、(Ⅰ)(Ⅱ)在上单调递增,证明见解析【解析】
(1)函数的定义域为,利用奇函数的必要条件,,求出,再用奇函数的定义证明;(2)判断在上单调递增,用单调性的定义证明,任取,求出函数值,用作差法,证明即可.【详解】解:(Ⅰ)∵函数是奇函数,定义域为,∴,即,解之得,此时,为奇函数,;(Ⅱ)由(Ⅰ)知,,设,且,∵,∴,∴,即故在上单调递增.【点睛】本题考查函数奇偶性的应用,注意奇偶性必要条件的运用,减少计算量但要加以证明,考查函数单调性的证明,属于中档题.19、(1)证明见解析(1)1【解析】
(1)运用函数的奇偶性的定义即可得证(1)由题意可得有且只有两个相等的实根,可得判别式为0,解方程可得所求值.【详解】(1)证明:由函数,,可得定义域为,且,可得为奇函数;(1)方程只有一个实数解,即为,即△,解得舍去),则的值为1.【点睛】本题考查函数的奇偶性的判断和二次方程有解的条件,考查方程思想和定义法,属于基础题.20、(1)(2)【解析】
(1)由题可得,解出,,进而得出答案.(2)由题可得,,再由计算得出答案,【详解】因为,所以,即解得所以(2)若,则所以,,,所以【点睛】本题主要考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高考语文二轮复习专题2小说阅读突破练9复合文本阅读的考查方式
- 中国人的健康现状
- 绿茶冲泡技术课件
- 井下透水安全培训
- 重症监护室术后健康宣教指南
- 关于超额预定的培训方案
- 【课件】+声音的产生与传播(教学课件)2024-2025学年初中物理人教版(2024)八年级上册+
- 珠宝门店黄金培训
- 学校领导安全培训
- 2025年深远海风电场建设规划与海上风能资源评估报告
- 2024年江苏省响水县卫生局公开招聘试题带答案
- 2025年河北省高考招生统一考试高考真题地理试卷(真题+答案)
- 2025春国家开放大学《毛概》终考大作业答案
- 疲劳恢复物理手段-洞察及研究
- 人教版三年级数学下学期期末复习试卷含答案10套
- 天津市四校联考2023-2024学年高一下学期7月期末考试化学试卷(含答案)
- 2025年河北省中考学易金卷地理试卷(原创卷)及参考答案
- 2025年时政100题(附答案)
- 2025年安全生产月查找身边安全隐患及风险控制专题培训课件
- CJ/T 328-2010球墨铸铁复合树脂水箅
- BIM技术在建筑项目施工工艺优化中的应用报告
评论
0/150
提交评论