2025届黑龙江省大庆市红岗区铁人中学高一数学第二学期期末联考模拟试题含解析_第1页
2025届黑龙江省大庆市红岗区铁人中学高一数学第二学期期末联考模拟试题含解析_第2页
2025届黑龙江省大庆市红岗区铁人中学高一数学第二学期期末联考模拟试题含解析_第3页
2025届黑龙江省大庆市红岗区铁人中学高一数学第二学期期末联考模拟试题含解析_第4页
2025届黑龙江省大庆市红岗区铁人中学高一数学第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省大庆市红岗区铁人中学高一数学第二学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从一批产品中取出三件产品,设事件为“三件产品全不是次品”,事件为“三件产品全是次品”,事件为“三件产品不全是次品”,则下列结论正确的是()A.事件与互斥 B.事件与互斥C.任何两个事件均互斥 D.任何两个事件均不互斥2.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样 B.系统抽样C.分层抽样 D.抽签法3.下列函数中,是偶函数且在区间上是增函数的是()A. B.C. D.4.下列函数中,在区间上为增函数的是A. B.C. D.5.已知,且,则实数的值为()A.2 B. C.3 D.6.已知集合,,则A. B. C. D.7.已知某路段最高限速60km/h,电子监控测得连续6辆汽车的速度用茎叶图表示如图所示(单位:km/h),若从中任抽取2辆汽车,则恰好有1辆汽车超速的概率为()A. B. C. D.8.在数列中,已知,,则一定()A.是等差数列 B.是等比数列 C.不是等差数列 D.不是等比数列9.若关于的方程有且只有两个不同的实数根,则实数的取值范围是()A. B. C. D.10.平行四边形中,M为的中点,若.则=()A. B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得份量成等差数列,且较大的三份之和的是较小的两份之和,则最小一份的量为___.12.在中,,,是的中点.若,则________.13.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.14.把二进制数1111(2)化为十进制数是______.15.设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为__.16.已知sin+cosα=,则sin2α=__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点是重心,.(1)用和表示;(2)用和表示.18.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sinBsinC的值.19.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.20.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为3元,根据以往的经验售价为4元时,可卖出280桶;若销售单价每增加1元,日均销售量就减少40桶,则这个经营部怎样定价才能获得最大利润?最大利润是多少?21.已知函数的最小正周期是.(1)求ω的值;(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据互斥事件的定义,逐个判断,即可得出正确选项.【详解】为三件产品全不是次品,指的是三件产品都是正品,为三件产品全是次品,为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:与是互斥事件;与是包含关系,不是互斥事件;与是互斥事件,故选B.【点睛】本题主要考查互斥事件定义的应用.2、B【解析】由题意,抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”,故选B.3、A【解析】

逐一分析选项,得到答案.【详解】A.是偶函数,并且在区间时增函数,满足条件;B.不是偶函数,并且在上是减函数,不满足条件;C.是奇函数,并且在区间上时减函数,不满足条件;D.是偶函数,在区间上是减函数,不满足条件;故选A.【点睛】本题考查了函数的基本性质,属于基础题型.4、A【解析】试题分析:对A,函数在上为增函数,符合要求;对B,在上为减函数,不符合题意;对C,为上的减函数,不符合题意;对D,在上为减函数,不符合题意.故选A.考点:函数的单调性,容易题.5、D【解析】

根据二角和与差的正弦公式化简,,再切化弦,即可求解.【详解】由题意又解得故选:【点睛】本题考查两角和与差的正弦公式,属于基础题.6、C【解析】分析:由题意先解出集合A,进而得到结果。详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。7、A【解析】

求出基本事件的总数,以及满足题意的基本事件数目,即可求解概率.【详解】解:由题意任抽取2辆汽车,其速度分别为:,共15个基本事件,其中恰好有1辆汽车超速的有,,共8个基本事件,则恰好有1辆汽车超速的概率为:,故选:A.【点睛】本题考查古典概型的概率的求法,属于基本知识的考查.8、C【解析】

依据等差、等比数列的定义或性质进行判断。【详解】因为,,,所以一定不是等差数列,故选C。【点睛】本题主要考查等差、等比数列定义以及性质的应用。9、B【解析】

方程化为,可转化为半圆与直线有两个不同交点,作图后易得.【详解】由得由题意半圆与直线有两个不同交点,直线过定点,作出半圆与直线,如图,当直线过时,,,当直线与半圆相切(位置)时,由,解得.所以的取值范围是.故选:B.【点睛】本题考查方程根的个数问题,把问题转化为直线与半圆有两个交点后利用数形结合思想可以方便求解.10、A【解析】

先求出,再根据得到解方程组即得解.【详解】由题意得,又因为,所以,由题意得,所以解得所以,故选A.【点睛】本题主要考查平面向量的运算法则,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设此等差数列为{an},公差为d,则(a3+a4+a5)×=a1+a2,即,解得a1=,d=.最小一份为a1,故答案为.12、【解析】

在中,由已知利用余弦定理可得,结合,解得,可求,在中,由余弦定理可得的值.【详解】由题意,在中,由余弦定理可得:可得:所以:…………①又……………②所以联立①②,解得.所以在中,由余弦定理得:即故答案为:【点睛】本题考查利用余弦定理解三角形,属于中档题.13、【解析】

直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.14、.【解析】

由二进制数的定义可将化为十进制数.【详解】由二进制数的定义可得,故答案为:.【点睛】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.15、【解析】试题分析:∵数列满足,且,∴当时,.当时,上式也成立,∴.∴.∴数列的前项的和.∴数列的前项的和为.故答案为.考点:(1)数列递推式;(2)数列求和.16、【解析】∵,∴即,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】

(1)设的中点为,可得出,利用重心性质得出,由此可得出关于、的表达式;(2)由,得出,再由,可得出关于、的表达式.【详解】(1)设的中点为,则,,为的重心,因此,;(2),,因此,.【点睛】本题考查利基底表示向量,应充分利用平面几何中一些性质,将问题中所涉及的向量利用基底表示,并结合平面向量的线性运算法则进行计算,考查分析问题和解决问题的能力,属于中等题.18、(1)(2)【解析】试题分析:(1)根据二倍角公式,三角形内角和,所以,整理为关于的二次方程,解得角的大小;(2)根据三角形的面积公式和上一问角,代入后解得边,这样就知道,然后根据余弦定理再求,最后根据证得定理分别求得和.试题解析:(1)由cos2A-3cos(B+C)=1,得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,解得cosA=或cosA=-2(舍去).因为0<A<π,所以A=.(2)由S=bcsinA=bc×=bc=5,得bc=20,又b=5,知c=4.由余弦定理得a2=b2+c2-2bccosA=25+16-20=21,故a=.从而由正弦定理得sinBsinC=sinA×sinA=sin2A=×=.考点:1.二倍角公式;2.正余弦定理;3.三角形面积公式.【方法点睛】本题涉及到解三角形问题,所以有关三角问题的公式都有涉及,当出现时,就要考虑一个条件,,,这样就做到了有效的消元,涉及三角形的面积问题,就要考虑公式,灵活使用其中的一个.19、(Ⅰ);(Ⅱ)或.【解析】

分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.20、定价为每桶7元,最大利润为440元.【解析】

若设定价在进价的基础上增加元,日销售利润为元,则,其中,整理函数,可得取何值时,有最大值,即获得最大利润【详解】设定价在进价的基础上增加元,日销售利润为元,则,由于,且,所以,;即,.所以,当时,取最大值.此时售价为,此时的最大利润为440元.【点睛】本题主要考查二次函数的应用,意在考查学生对该知识的理解掌握水平,属于基础题.21、(1)(2)函数f(x)的最大值是2+,此时x的集合为{x|x=+,k∈Z}.【解析】试题分析析:本题是函数性质问题,可借助正弦函数的图象与性质去研究,根据周期公式可以求出,当函数的解析式确定后,可以令,,根据正弦函数的最大值何时取得,可以计算出为何值时,函数值取得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论