上海市张堰中学2025届数学高一下期末检测试题含解析_第1页
上海市张堰中学2025届数学高一下期末检测试题含解析_第2页
上海市张堰中学2025届数学高一下期末检测试题含解析_第3页
上海市张堰中学2025届数学高一下期末检测试题含解析_第4页
上海市张堰中学2025届数学高一下期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市张堰中学2025届数学高一下期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的内角、、的对边分别为、、,且,若,则的外接圆面积为()A. B. C. D.2.函数的对称中心是()A. B. C. D.3.已知甲,乙,丙三人去参加某公司面试,他们被该公司录取的概率分别是,,,且三人录取结果相互之间没有影响,则他们三人中至少有一人被录取的概率为()A. B. C. D.4.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.3 C.1 D.5.法国“业余数学家之王”皮埃尔·德·费马在1936年发现的定理:若x是一个不能被质数p整除的整数,则必能被p整除,后来人们称为费马小定理.按照该定理若在集合中任取两个数,其中一个作为x,另一个作为p,则所取的两个数符合费马小定理的概率为()A. B. C. D.6.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.据上述信息,下列结论中正确的是()A.2015年第三季度环比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度环比有所提高7.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.108.已知,则的值为()A. B. C. D.9.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80 B.40 C.60 D.2010.等差数列中,,,下列结论错误的是()A.,,成等比数列 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.己知为数列的前项和,且,则_____.12.在正方体的体对角线与棱所在直线的位置关系是______.13.设数列的通项公式为,则_____.14.圆与圆的公共弦长为________.15.如图,在中,,,点D为BC的中点,设,.的值为___________.16.已知内接于抛物线,其中O为原点,若此内接三角形的垂心恰为抛物线的焦点,则的外接圆方程为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(1)直线与平面所成角的正切值;(2)三棱锥的体积.18.已知公差不为的等差数列满足.若,,成等比数列.(1)求的通项公式;(2)设,求数列的前项和.19.设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.20.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若的面积为,其外接圆的半径为,求的周长.21.锐角三角形的内角A,B,C的对边分别为a,b,c,且.(1)求A;(2)若,,求面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

先化简得,再利用正弦定理求出外接圆的半径,即得的外接圆面积.【详解】由题得,所以,所以,所以,所以.由正弦定理得,所以的外接圆面积为.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、C【解析】,设是奇函数,其图象关于原点对称,而函数的图象可由的图象向右平移一个单位,向下平移两个单位得到,所以函数的图象关于点对称,故选C.3、B【解析】

由题意,可先求得三个人都没有被录取的概率,接下来求至少有一人被录取的概率,利用对立事件的概率公式,求得结果.【详解】甲、乙、丙三人都没有被录取的概率为,所以三人中至少有一人被录取的概率为,故选B.【点睛】该题考查的是有关概率的求解问题,关键是掌握对立事件的概率加法公式,求得结果.4、A【解析】

根据图像,将表示成的线性和形式,由此求得的值,进而求得的值.【详解】根据图像可知,所以,故选A.【点睛】本小题主要考查平面向量的线性运算,考查平面向量基本定理,考查数形结合的数学思想方法,属于基础题.5、A【解析】

用列举法结合古典概型概率公式计算即可得出答案.【详解】用表示抽取的两个数,其中第一个为,第二个为总的基本事件分别为:,,,共12种其中所取的两个数符合费马小定理的基本事件分别为:,,共8种则所取的两个数符合费马小定理的概率故选:A【点睛】本题主要考查了利用古典概型概率公式计算概率,属于基础题.6、C【解析】

根据同比和环比的定义比较两期数据得出结论.【详解】解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;2015年第一季度利用率为74.2%,2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;2016年底三季度利用率率为73.2%,2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;2017年第四季度利用率为78%,2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.故选C.【点睛】本题考查了新定义的理解,图表认知,考查分析问题解决问题的能力,属于基础题.7、C【解析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.8、C【解析】

根据辅助角公式即可.【详解】由辅助角公式得所以,选C.【点睛】本题主要考查了辅助角公式的应用:,属于基础题.9、B【解析】试题分析:方法一:由条件可知三年级的同学的人数为,所以应抽人数为,方法二:由条件可知样本中一、二、三、四年级的人数比为4∶3∶2∶1,因此应抽取三年级的学生人数为,答案选B.考点:分层抽样10、C【解析】

根据条件得到公差,然后得到等差数列的通项,从而对四个选项进行判断,得到答案.【详解】等差数列中,,所以,所以,所以,,,,,,,,,所以,所以,,成等比数列,故A选项正确,,故B选项正确,,故C选项错误,,故D选项正确.故选:C.【点睛】本题考查求等差数列的项,等差数列求前项的和,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据可知,得到数列为等差数列;利用等差数列前项和公式构造方程可求得;利用等差数列通项公式求得结果.【详解】由得:,即:数列是公差为的等差数列又,解得:本题正确结果:【点睛】本题考查等差数列通项公式、前项和公式的应用,关键是能够利用判断出数列为等差数列,进而利用等差数列中的相关公式来进行求解.12、异面直线【解析】

根据异面直线的定义,作出图形,即可求解,得到答案.【详解】如图所示,与不在同一平面内,也不相交,所以体对角线与棱是异面直线.【点睛】本题主要考查了异面直线的概念及其判定,其中熟记异面直线的定义是解答本题的关键,着重考查了分析问题和解答问题的能力,属于基础题.13、【解析】

根据数列的通项式求出前项和,再极限的思想即可解决此题。【详解】数列的通项公式为,则,则答案.故为:.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、列项相消等。本题主要利用了分组求和的方法。14、【解析】

先求出公共弦方程为,再求出弦心距后即可求解.【详解】两圆方程相减可得公共弦直线方程为,圆的圆心为,半径为,圆心到的距离为,公共弦长为.故答案为:.【点睛】本题考查了圆的一般方程以及直线与圆位置关系的应用,属于基础题.15、【解析】

在和在中,根据正弦定理,分别表示出.由可得等式,代入已知条件化简即可得解.【详解】在中,由正弦定理可得,则在中,由正弦定理可得,则点D为BC的中点,则所以因为,,由诱导公式可知代入上述两式可得所以故答案为:【点睛】本题考查了正弦定理的简单应用,属于基础题.16、【解析】

由抛物线的对称性知A、B关于x轴对称,设出它们的坐标,利用三角形的垂心的性质,结合斜率之积等于﹣1即可求得直线MN的方程,即可求出点C的坐标,问题得以解决.【详解】∵抛物线关于x轴对称,内接三角形的垂心恰为抛物线的焦点,三边上的高过焦点,∴另两个顶点A,B关于x轴对称,即△ABO是等腰三角形,作AO的中垂线MN,交x轴与C点,而Ox是AB的中垂线,故C点即为△ABO的外接圆的圆心,OC是外接圆的半径,设A(x1,2),B(x1,﹣2),连接BF,则BF⊥AO,∵kBF,kAO,∴kBF•kAO=•1,整理,得x1(x1﹣5)=1,则x1=5,(x1=1不合题意,舍去),∵AO的中点为(,),且MN∥BF,∴直线MN的方程为y(x),当x1=5代入得2x+4y﹣91,∵C是MN与x轴的交点,∴C(,1),而△ABO的外接圆的半径OC,于是得到三角形外接圆方程为(x)2+y2=()2,△OAB的外接圆方程为:x2﹣9x+y2=1,故答案为x2﹣9x+y2=1.【点睛】本题考查抛物线的简单性质,考查了两直线垂直与斜率的关系,是中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)要求直线与平面所成角的正切值,先要找到直线在平面上的射影,即在直线上找一点作平面的垂线,结合已知与图形,转化为证明平面再求解;(2)三棱锥的体积计算在于选取合适的底和高,此题以为底,与的中点的连线为高计算更为快速,从而转化为证明平面再求解.【详解】(1)平面,平面又,,平面,平面所以平面,所以为直线与平面所成角。易证是一个直角三角形,所以.(2)如图,设的中点为,则,平面,平面,又,,,又,,,所以平面,所以为三棱锥的高.因此可求【点睛】本题主要考察线面角与三棱锥体积的计算.线面角的关键在于找出直线在平面上的射影,一般转化为直线与平面的垂直;三棱锥体积的计算主要在于选择合适的底和高.18、(1);(2).【解析】

(1)根据对比中项的性质即可得出一个式子,再带入等差数列的通项公式即可求出公差.(2)根据(1)的结果,利用分组求和即可解决.【详解】(1)因为成等比数列,所以,所以,即,因为,所以,所以;(2)因为,所以,,.【点睛】本题主要考查了等差数列通项式,以及等差中项的性质.数列的前的求法,求数列前项和常用的方法有错位相减、分组求和、裂项相消.19、(1);(2)见解析.【解析】

试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证,先设P(m,n),则需证,即根据条件可得,而,代入即得.试题解析:解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.20、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由由正弦定理得,进而得到,求得,即可求解;(Ⅱ)由(Ⅰ)和正弦定理,求得,再由余弦定理得,利用三角形的面积公式,求得,进而求得的值,得出三角形的周长.【详解】(Ⅰ)由题意,因为,由正弦定理,得,即,由,得,又由,则,所以,解得,又因为,所以.(Ⅱ)由(Ⅰ)知,且外接圆的半径为,由正弦定理可得,解得,由余弦定理得,可得,因为的面积为,解得,所以,解得:,所以的周长.【点睛】本题主要考查了三角恒等变换的应用,以及正弦定理、余弦定理和三角形的面积公式的应用,其中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论