江苏省睢宁2025届高一下数学期末质量检测模拟试题含解析_第1页
江苏省睢宁2025届高一下数学期末质量检测模拟试题含解析_第2页
江苏省睢宁2025届高一下数学期末质量检测模拟试题含解析_第3页
江苏省睢宁2025届高一下数学期末质量检测模拟试题含解析_第4页
江苏省睢宁2025届高一下数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省睢宁2025届高一下数学期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的定义域是()A. B.C. D.2.在中,已知其面积为,则=()A. B. C. D.3.设,,则的值可表示为()A. B. C. D.4.已知函数的部分图象如图所示,则的值为()A. B. C. D.5.等差数列{an}的公差是2,若a2,a4A.n(n+1) B.n(n-1) C.n(n+1)2 D.6.以分别表示等差数列的前项和,若,则的值为A.7 B. C. D.7.某实验单次成功的概率为0.8,记事件A为“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”,现采用随机模拟的方法估计事件4的概率:先由计算机给出0~9十个整数值的随机数,指定0,1表示单次实验失败,2,3,4,5,6,7,8,9表示单次实验成功,以3个随机数为组,代表3次实验的结果经随机模拟产生了20组随机数,如下表:752029714985034437863694141469037623804601366959742761428261根据以上方法及数据,估计事件A的概率为()A.0.384 B.0.65 C.0.9 D.0.9048.设a>0,b>0,若是和的等比中项,则的最小值为()A.6 B. C.8 D.99.设,为两条不同的直线,,为两个不同的平面,给出下列命题:①若,,则;②若,,则;③若,,,则;④若,,则与所成的角和与所成的角相等.其中正确命题的序号是()A.①② B.①④ C.②③ D.②④10.的值()A.小于0 B.大于0 C.等于0 D.不小于0二、填空题:本大题共6小题,每小题5分,共30分。11.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.12.已知是奇函数,且,则_______.13.已知数列满足:,,则使成立的的最大值为_______14.数列通项公式,前项和为,则________.15.已知等差数列的公差为,且,其前项和为,若满足,,成等比数列,且,则______,______.16.若把写成的形式,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线l:x+3y﹣2=1.(1)求与l垂直,且过点(1,1)直线方程;(2)求圆心为(4,1),且与直线l相切的圆的方程.18.如右图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为nmile,在A处看灯塔C在货轮的北偏西30°,距离为nmile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.19.如图,已知四棱锥的侧棱底面,且底面是直角梯形,,,,,,点在棱上,且.(1)证明:平面;(2)求三棱锥的体积.20.若,解关于的不等式.21.若直线与轴,轴的交点分别为,圆以线段为直径.(Ⅰ)求圆的标准方程;(Ⅱ)若直线过点,与圆交于点,且,求直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

利用复合函数求定义域的方法求出函数的定义域.【详解】令x+(k∈Z),解得:x(k∈Z),故函数的定义域为{x|x,k∈Z}故选A.【点睛】本题考查的知识要点:正切函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.2、C【解析】或(舍),故选C.3、A【解析】

由,可得到,然后根据反余弦函数的图象与性质即可得到答案.【详解】因为,所以,则.故选:A【点睛】本题主要考查反余弦函数的运用,熟练掌握反余弦函数的概念及性质是解决本题的关键.4、C【解析】

结合函数图像,由函数的最值求出A,由周期求出,再由求出的值.【详解】由图像可知:,故,又,所以又,故:.故选:C【点睛】本题考查了利用图像求三角函数的解析式,考查了学生综合分析,数形结合的能力,属于中档题.5、A【解析】试题分析:由已知得,a42=a2⋅a8,又因为{an}【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n项和.6、B【解析】

根据等差数列前n项和的性质,当n为奇数时,,即可把转化为求解.【详解】因为数列是等差数列,所以,故,选B.【点睛】本题主要考查了等差数列前n项和的性质,属于中档题.7、C【解析】

由随机模拟实验结合图表计算即可得解.【详解】由随机模拟实验可得:“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中最多成功1次”共141,601两组随机数,则“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”共组随机数,即事件的概率为,故选.【点睛】本题考查了随机模拟实验及识图能力,属于中档题.8、D【解析】

试题分析:由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.考点:重要不等式,等比中项9、D【解析】

根据线面平行的性质和面面垂直的判定可知②④正确.【详解】对于①,若,,或,故①错;对于②,过作一个平面,它与平面交于,则,因为,故,因为,故,故②成立;对于③,由面面垂直的性质定理可知前提条件缺少,故③错;对于④,如图所示,如果分别于平面斜交,且斜足分别为,在直线上分别截取斜线段、,使得,过分别作平面的垂线,垂足分别为,连接,则分别为与平面所成的角、与平面所成的角,因为,故,所以,故.当分别垂直于时,;当分别平行于时,;故与所成的角和与所成的角相等,故④正确.故选D.【点睛】本题考查空间中的点、线、面的位置关系,正确判断这些命题的真假的前提是熟悉公理、定理的前提条件,同时需要动态考虑它们的位置关系,观察是否有不同的情况出现.10、A【解析】

确定各个角的范围,由三角函数定义可确定正负.【详解】∵,∴,,,∴.故选:A.【点睛】本题考查各象限角三角函数的符号,掌握三角函数定义是解题关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先作出线面角,再利用三角函数求解即可.【详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【点睛】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.12、【解析】

根据奇偶性定义可知,利用可求得,从而得到;利用可求得结果.【详解】为奇函数又即,解得:本题正确结果:【点睛】本题考查根据函数的奇偶性求解函数值的问题,属于基础题.13、4【解析】

从得到关于的通项公式后可得的通项公式,解不等式后可得使成立的的最大值.【详解】易知为等差数列,首项为,公差为1,∴,∴,令,∴,∴.故答案为:4【点睛】本题考查等差数列的通项的求法及数列不等式的解,属于容易题.14、1【解析】

利用裂项求和法求出,取极限进而即可求解.【详解】,故,所以,故答案为:1【点睛】本题考查了裂项求和法以及求极限值,属于基础题.15、2【解析】

由,可求出,再由,,成等比数列,可建立关系式,求出,进而求出即可.【详解】由,可知,即,又,,成等比数列,所以,则,即,解得或,因为,所以,,所以.故答案为:2;.【点睛】本题考查等比数列的性质,考查等差数列前项和的求法,考查学生的计算求解能力,属于基础题.16、【解析】

将角度化成弧度,再用象限角的表示方法求解即可.【详解】解:.故答案为:.【点睛】本题考查弧度与角度的互化,象限角的表示,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3x﹣y﹣2=1;(2)(x﹣4)2+(y﹣1)2.【解析】

(1)根据两直线垂直的性质,设出所求直线的方程,将点坐标代入,由此求得所求直线方程.(2)利用圆心到直线的距离求得圆的半径,由此求得圆的方程.【详解】(1)根据题意,设要求直线的方程为3x﹣y﹣m=1,又由要求直线经过点(1,1),则有3﹣1﹣m=1,解可得m=2;即要求直线的方程为3x﹣y﹣2=1;(2)根据题意,设要求圆的半径为r,若直线l与圆相切,则有r=d,则要求圆的方程为(x﹣4)2+(y﹣1)2.【点睛】本小题主要考查两条直线垂直的知识,考查直线和圆的位置关系,属于基础题.18、(1)24;(2)8【解析】

(1)利用已知条件,利用正弦定理求得AD的长.(2)在△ADC中由余弦定理可求得CD,答案可得.【详解】(1)在△ABD中,由已知得∠ADB=60°,B=45°由正弦定理得(2)在△ADC中,由余弦定理得CD2=AD2+AC2﹣2AD•ACcos30°,解得CD=.所以A处与D处之间的距离为24nmile,灯塔C与D处之间的距离为nmile.【点睛】点睛:解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.19、(1)见证明;(2)4【解析】

(1)取的三等分点,使,证四边形为平行四边形,运用线面平行判定定理证明.(2)三棱锥的体积可以用求出结果.【详解】(1)证明:取的三等分点,使,连接,.因为,,所以,.因为,,所以,,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)解:因为,,所以的面积为,因为底面,所以三棱锥的高为,所以三棱锥的体积为.因为,所以三棱锥的高为,所以三棱锥的体积为,故三棱锥的体积为.【点睛】本题考查了线面平行的判定定理、三棱锥体积的计算,在证明线面平行时需要构造平行四边形来证明,三棱锥的体积计算可以选用割、补等方法.20、当0<a<1时,原不等式的解集为,当a<0时,原不等式的解集为;当a=0时,原不等式的解集为⌀.【解析】

试题分析:(1),利用,可得,分三种情况对讨论的范围:0<a<1,a<0,a=0,分别求得相应情况下的解集即可.试题解析:不等式>1可化为>0.因为a<1,所以a-1<0,故原不等式可化为<0.故当0<a<1时,原不等式的解集为,当a<0时,原不等式的解集为,当a=0时,原不等式的解集为⌀.21、(Ⅰ);(Ⅱ)或.【解析】

(1)本题首先根据直线方程确定、两点坐标,然后根据线段为直径确定圆心与半径,即可得出圆的标准方程;(2)首先可根据题意得出圆心到直线的距离为,然后根据直线的斜率是否存在分别设出直线方程,最后根据圆心到直线距离公式即可得出结果。【详解】(1)令方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论