徐州市2025届高一下数学期末调研试题含解析_第1页
徐州市2025届高一下数学期末调研试题含解析_第2页
徐州市2025届高一下数学期末调研试题含解析_第3页
徐州市2025届高一下数学期末调研试题含解析_第4页
徐州市2025届高一下数学期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

徐州市2025届高一下数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,,则()A.或 B. C. D.2.在△ABC中,已知,P为线段AB上的点,且的最大值为()A.3B.4C.5D.63.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知,且,,则()A. B. C. D.5.一组数平均数是,方差是,则另一组数,的平均数和方差分别是()A. B.C. D.6.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离7.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.158.不等式的解集是()A. B.C.或 D.或9.若a,b是方程的两个根,且a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值为()A.-4 B.-3 C.-2 D.-110.函数的图象如图所示,则y的表达式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在高一某班的元旦文艺晚会中,有这么一个游戏:一盒子内装有6张大小和形状完全相同的卡片,每张卡片上写有一个成语,它们分别为意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,从盒内随机抽取2张卡片,若这2张卡片上的2个成语有相同的字就中奖,则该游戏的中奖率为________.12.已知向量(1,2),(x,4),且∥,则_____.13.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为_________.14.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=.15.已知直线y=b(0<b<1)与函数f(x)=sinωx(ω>0)在y轴右侧依次的三个交点的横坐标为x1=,x2=,x3=,则ω的值为______16.将边长为1的正方形中,把沿对角线AC折起到,使平面⊥平面ABC,则三棱锥的体积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制.各等级划分标准见下表.规定:三级为合格等级,D为不合格等级.为了解该校高一年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计.按照的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.(I)求和频率分布直方图中的的值,并估计该校高一年级学生成绩是合格等级的概率;(II)在选取的样本中,从两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是等级的概率.18.已知函数.(1)判断函数奇偶性;(2)讨论函数的单调性;(3)比较与的大小.19.已知函数的部分图象如图所示.(1)求函数的解析式,并求出的单调递增区间;(2)若,求的值20.在锐角中,角,,的对边分别为,,,若.(1)求角;(2)若,则周长的取值范围.21.已知等差数列的首项为,公差为,前n项和为,且满足,.(1)证明;(2)若,,当且仅当时,取得最小值,求首项的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由三角形面积公式可得,进而可得解.【详解】在中,,,,,可得,所以,所以【点睛】本题主要考查了三角形的面积公式,属于基础题.2、A【解析】试题分析:在中,设,∵,,即,∴,∵,∴,即.∵,,∴,,∴.根据直角三角形可得,,,∴,以所在的直线为轴,以所在的直线为轴建立直角坐标系可得,为线段上的一点,则存在实数使得.设,,则,且,∴,可得则,即,解得,故所求的最大值为:,故选A.考点:三角形的内角和定理,两角和的正弦公式,基本不等式求解最值.3、A【解析】

根据和之间能否推出的关系,得到答案.【详解】由可得,由,得到或,,不能得到,所以“”是“”的充分不必要条件,故选:A.【点睛】本题考查充分不必要条件的判断,属于简单题.4、C【解析】

根据同角三角函数的基本关系及两角和差的正弦公式计算可得.【详解】解:因为,.因为,所以.因为,,所以.所以.故选:【点睛】本题考查同角三角函数的基本关系,两角和差的正弦公式,属于中档题.5、B【解析】

直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.6、B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r7、C【解析】

抽取比例为,,抽取数量为20,故选C.8、B【解析】

由题意,∴,即,解得,∴该不等式的解集是,故选.9、D【解析】

由韦达定理确定,,利用已知条件讨论成等差数列和等比数列的位置,从而确定的值.【详解】由韦达定理得:,,所以,由题意这三个数可适当排序后成等比数列,且,则2一定在中间所以,即因为这三个数可适当排序后成等差数列,且,则2一定不在的中间假设,则即故选D【点睛】本题考查了等差数列和等比数列的基本性质,解决本题的关键是要掌握三个数成等差数列和等比数列的性质,如成等比数列,且,,则2必为等比中项,有.10、B【解析】

根据图像最大值和最小值可得,根据最大值和最小值的所对应的的值,可得周期,然后由,得到,代入点,结合的范围,得到答案.【详解】根据图像可得,,即,根据,得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故选B.【点睛】本题考查根据函数图像求正弦型函数的解析式,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先列举出总的基本事件,在找出其中有2个成语有相同的字的基本事件个数,进而可得中奖率.【详解】解:先观察成语中的相同的字,用字母来代替这些字,气—A,风—B,马—C,信—D,河—E,意—F,用ABF,B,CF,CD,AE,DE分别表示成语意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,则从盒内随机抽取2张卡片有共15个基本事件,其中有相同字的有共6个基本事件,该游戏的中奖率为,故答案为:.【点睛】本题考查古典概型的概率问题,关键是要将符合条件的基本事件列出,是基础题.12、.【解析】

根据求得,从而可得,再求得的坐标,利用向量模的公式,即可求解.【详解】由题意,向量,则,解得,所以,则,所以.【点睛】本题主要考查了向量平行关系的应用,以及向量的减法和向量的模的计算,其中解答中熟记向量的平行关系,以及向量的坐标运算是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站的战法有=4种站法∴=14、13【解析】(解法1)由分层抽样得,解得n=13.(解法2)从甲乙丙三个车间依次抽取a,b,c个样本,则120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.15、1【解析】

由题得函数的周期为解之即得解.【详解】由题得函数的周期为.故答案为1【点睛】本题主要考查三角函数的图像和性质,考查三角函数的周期,意在考查学生对这些知识的理解掌握水平和分析推理能力.16、【解析】

由面面垂直的性质定理可得面,再结合三棱锥的体积的求法求解即可.【详解】解:取中点,连接,因为四边形为边长为1的正方形,则,即,又平面⊥平面ABC,由面面垂直的性质定理可得:面,且,则,故答案为:.【点睛】本题考查了三棱锥的体积的求法,重点考查了面面垂直的性质定理,属中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I),;(II).【解析】试题分析:(I)根据频率直方图的相关概率易求,依据样本估计总体的思想可得该校高一年级学生成绩是合格等级的概率;(II)记“至少有一名学生是等级”事件为,求事件对立事件的的概率,可得.试题解析:(I)由题意可知,样本容量因为成绩是合格等级人数为:人,抽取的50人中成绩是合格等级的频率为,依据样本估计总体的思想,所以,该校高一年级学生成绩是合格等级的概率为(II)由茎叶图知,等级的学生共有3人,等级学生共有人,记等级的学生为,等级学生为,则从8名学生中随机抽取2名学生的所有情况为:共28个基本事件记“至少有一名学生是等级”事件为,则事件的可能结果为共10种因此考点:1、频率分布直方图;2、古典概型.18、(1)是偶函数(2)见解析(3)【解析】

(1)由奇偶函数的定义判断;(2)由单调性的定义证明;(3)由于函数为偶函数,因此只要比较与的大小,因此先确定与的大小,这就得到分类标准.【详解】(1)是偶函数(2)当时,是增函数;当时,是减函数;先证明当时,是增函数证明:任取,且,则,且,,即:当时,是增函数∵是偶函数,∴当时,是减函数.(3)要比较与的大小,∵是偶函数,∴只要比较与大小即可.当时,即时,∵当时,是增函数,∴当时,即当时,∵当时,是增函数,∴【点睛】本题考查函数的奇偶性与单调性,掌握奇偶性与单调性的定义是解题基础.19、(1);递增区间为;(2)【解析】

(1)由图可知其函数的周期满足,从而求得,进而求得,再代入点的坐标可得值,从而求得解析式;解不等式,可得函数的单调增区间;(2)由题意可得,结合,得到,利用平方关系,求得,之后利用差角余弦公式求得结果.【详解】(1)设函数的周期为,由图可知,∴,即,∵,∴,∴,上式中代入,有,得,,即,,又∵,∴,∴,令,解得,即的递增区间为;(2),又,∴,∴;∴.【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,求正弦型函数的单调区间,同角三角函数关系式,利用整体角思维,结合差角正弦公式求三角函数值,属于简单题目.20、(1)(2)【解析】

(1)利用切化成弦和余弦定理对等式进行化简,得角的正弦值;(2)利用成正弦定理把边化成角,从而实现的周长用角B的三角函数进行表示,即周长,再根据锐角三角形中角,求得函数值域.【详解】(1)由,得到,又,所以.(2),,设周长为,由正弦定理知,由合分比定理知,即,,即.又因为为锐角三角形,所以.,周长.【点睛】对运动变化问题,首先要明确变化的量是什么?或者选定什么量为变量?然后,利用函数与方程思想,把所求的目标表示成关于变量的函数,再研究函数性质进行问题求解.21、(1)证明见解析;(2)【解析】

(1)根据等差数列的前n项和公式,变形可证明为等差数列.结合条件,,可得,进而表示出.由为等差数列,表示出,化简变形后结合不等式性质即可证明.(2)将三角函数式分组,提公因式后结合同角三角函数关系式化简.再由平方差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论