版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西钦州市钦州港经济技术开发区2023-2024学年初中数学毕业考试模拟冲刺卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.2.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,,,,则等于A. B. C. D.3.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是()成绩(分)3029282618人数(人)324211A.该班共有40名学生B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分4.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为()A.20 B.15 C.30 D.605.如图,BD是∠ABC的角平分线,DC∥AB,下列说法正确的是()A.BC=CD B.AD∥BCC.AD=BC D.点A与点C关于BD对称6.对于二次函数,下列说法正确的是()A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点7.中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是()A. B. C. D.8.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断9.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米10.二次函数y=ax2+bx+c(a≠0)的图象如图,a,b,c的取值范围()A.a<0,b<0,c<0B.a<0,b>0,c<0C.a>0,b>0,c<0D.a>0,b<0,c<0二、填空题(共7小题,每小题3分,满分21分)11.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则⊙O的半径为___________.12.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.(1)OM的长等于_______;(2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.13.若有意义,则x的范围是_____.14.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.15.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D外,且点B在⊙D内.设⊙D的半径为r,那么r的取值范围是_________.16.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_____cm.17.如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为.三、解答题(共7小题,满分69分)18.(10分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求的值.19.(5分)已知A=ab(a-b)-ba(a-b).化简A;如果a、b20.(8分)如图,在的矩形方格纸中,每个小正方形的边长均为,线段的两个端点均在小正方形的顶点上.在图中画出以线段为底边的等腰,其面积为,点在小正方形的顶点上;在图中面出以线段为一边的,其面积为,点和点均在小正方形的顶点上;连接,并直接写出线段的长.21.(10分)已知,抛物线(为常数).(1)抛物线的顶点坐标为(,)(用含的代数式表示);(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;(3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是.22.(10分)计算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣23.(12分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.24.(14分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】
结合图形,逐项进行分析即可.【详解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②,故选C.【点睛】本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.2、C【解析】
根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:,,,,∴==,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.3、D【解析】A.∵32+4+2+1+1=40(人),故A正确;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;C.∵成绩是30分的人有32人,最多,故C正确;D.该班学生这次考试成绩的中位数为30分,故D错误;4、B【解析】
有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.【详解】∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.故选B.【点睛】本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(1)对角线互相平分且相等的四边形是矩形.5、A【解析】
由BD是∠ABC的角平分线,根据角平分线定义得到一对角∠ABD与∠CBD相等,然后由DC∥AB,根据两直线平行,得到一对内错角∠ABD与∠CDB相等,利用等量代换得到∠DBC=∠CDB,再根据等角对等边得到BC=CD,从而得到正确的选项.【详解】∵BD是∠ABC的角平分线,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故选A.【点睛】此题考查了等腰三角形的判定,以及平行线的性质.学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题.这是一道较易的证明题,锻炼了学生的逻辑思维能力.6、B【解析】
二次函数,所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为-3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.7、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判断.详解:∵EF∥AB,∴△CEF∽△CAB,∴,故选B.点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.8、B【解析】
比较OP与半径的大小即可判断.【详解】,,,点P在外,故选B.【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.9、C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.10、D【解析】试题分析:根据二次函数的图象依次分析各项即可。由抛物线开口向上,可得,再由对称轴是,可得,由图象与y轴的交点再x轴下方,可得,故选D.考点:本题考查的是二次函数的性质点评:解答本题的关键是熟练掌握二次函数的性质:的正负决定抛物线开口方向,对称轴是,C的正负决定与Y轴的交点位置。二、填空题(共7小题,每小题3分,满分21分)11、【解析】
如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.【详解】如图,连接CO并延长,交AB于点F;∵AC=BC,∴CF⊥AB(垂径定理的推论);∵BD是⊙O的直径,∴AD⊥AB;设⊙O的半径为r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=,故答案为.【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.12、(1)4;(2)见解析;【解析】
解:(1)由勾股定理可得OM的长度(2)取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,则点P即为所求。【详解】(1)OM==4;故答案为4.(2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴当a=时,PA2+PB2取得最小值,综上,需作出点P满足线段OP的长=;取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,则点P即为所求.【点睛】(1)根据勾股定理即可得到结论;(2)取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR即可得到结果.13、x≤1.【解析】
根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【详解】依题意得:1﹣x≥0且x﹣3≠0,解得:x≤1.故答案是:x≤1.【点睛】本题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.14、250【解析】
从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积.【详解】该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:立体图形的体积为250π立方单位.故答案为250π.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.15、.【解析】
先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==1.∵CD⊥AB,∴CD=.∵AD•BD=CD2,设AD=x,BD=1-x.解得x=,∴点A在圆外,点B在圆内,r的范围是,故答案为.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.16、4【解析】
∵AB=2cm,AB=AB1,∴AB1=2cm,∵四边形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE∴AB1=B1C∴AC=4cm.17、【解析】分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.由图象可知,此时.三、解答题(共7小题,满分69分)18、【解析】
根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.【详解】解:∵矩形沿直线AC折叠,点B落在点E处,∴CE=BC,∠BAC=∠CAE,∵矩形对边AD=BC,∴AD=CE,设AE、CD相交于点F,在△ADF和△CEF中,,∴△ADF≌△CEF(AAS),∴EF=DF,∵AB∥CD,∴∠BAC=∠ACF,又∵∠BAC=∠CAE,∴∠ACF=∠CAE,∴AF=CF,∴AC∥DE,∴△ACF∽△DEF,∴,设EF=3k,CF=5k,由勾股定理得CE=,∴AD=BC=CE=4k,又∵CD=DF+CF=3k+5k=8k,∴AB=CD=8k,∴AD:AB=(4k):(8k)=.【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF和△DEF相似是解题的关键,也是本题的难点.19、(1)a+bab【解析】
(1)先通分,再进行同分母的减法运算,然后约分得到原式=a+b(2)利用根与系数的关系得到a+b=【详解】解:(1)A==(a+b)(a-b)(2)∵a、b是方程x2∴a+b=4,ab=-1∴A=【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=020、(1)见解析;(2)见解析;(3)见解析,.【解析】
(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE=.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.21、(1);(2)图象见解析,或;(3)【解析】
(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.【详解】解:(1),抛物线的顶点的坐标为.故答案为:(2)将代入抛物线的解析式得:解得:,抛物线的解析式为.抛物线的大致图象如图所示:将代入得:,解得:或抛物线与反比例函数图象的交点坐标为或.将代入得:,.将代入得:,.综上所述,反比例函数的表达式为或.(3)设点的坐标为,则点的坐标为,的坐标为.的长随的增大而减小.矩形在其对称轴的左侧,抛物线的对称轴为,当时,的长有最小值,的最小值.的长度不变,当最小时,有最小值.的最小值故答案为:.【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.22、(1)﹣1;(2)x=﹣1是原方程的根.【解析】
(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;(2)直接去分母再解方程得出答案.【详解】(1)原式=﹣2﹣1+2×=﹣﹣1+=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,故x=﹣1是原方程的根.【点睛】此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.23、(1)答案见解析;(2).【解析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【详解】(1)10÷25%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4×=1(人),八年级获一等奖人数:4×=1(人),∴九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M表示,八年级获一等奖的同学用N表示,九年级获一等奖的同学用P1、P2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版房屋建筑施工合作设计协议版
- 2024年股权激励实施合同版B版
- 2024民间借贷房产抵押担保合同范本3篇
- 2023-2024年检验类之临床医学检验技术(师)考试题库
- 2024版phc管桩施工合同
- 2023-2024年初级经济师之初级经济师基础知识通关提分题库(考点梳理)
- 2024版文员工作合同模板3篇
- 2024版春、夏季草花采购项目合同
- 2024年顺德区前期物业管理服务合同3篇
- 2024挖机维修保养与设备租赁合同3篇
- 2024年高考物理模拟卷(山东卷专用)(考试版)
- 湖北省武汉市青山区2022-2023学年五年级上学期数学期末试卷(含答案)
- 2024年安徽省高校分类对口招生考试数学试卷真题
- 《入侵检测与防御原理及实践(微课版)》全套教学课件
- IT企业安全生产管理制度范本
- 工业传感器行业市场调研分析报告
- 2024电影数字节目管理中心招聘历年高频难、易错点练习500题附带答案详解
- 小学生心理健康讲座5
- 上海市市辖区(2024年-2025年小学五年级语文)部编版期末考试((上下)学期)试卷及答案
- 国家职业技术技能标准 X2-10-07-18 陶瓷工艺师(试行)劳社厅发200633号
- 人教版八年级上册生物全册教案(完整版)教学设计含教学反思
评论
0/150
提交评论