2022-2023学年湖南省双峰一中数学高三第一学期期末质量检测试题含解析_第1页
2022-2023学年湖南省双峰一中数学高三第一学期期末质量检测试题含解析_第2页
2022-2023学年湖南省双峰一中数学高三第一学期期末质量检测试题含解析_第3页
2022-2023学年湖南省双峰一中数学高三第一学期期末质量检测试题含解析_第4页
2022-2023学年湖南省双峰一中数学高三第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.22.若函数,在区间上任取三个实数,,均存在以,,为边长的三角形,则实数的取值范围是()A. B. C. D.3.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?()A. B. C. D.4.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.25.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.等差数列的前项和为,若,,则数列的公差为()A.-2 B.2 C.4 D.77.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.28.函数满足对任意都有成立,且函数的图象关于点对称,,则的值为()A.0 B.2 C.4 D.19.已知为等腰直角三角形,,,为所在平面内一点,且,则()A. B. C. D.10.如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、、分别交于、、,设三棱锥的体积为,截面三角形的面积为,则()A., B.,C., D.,11.若的展开式中的系数为150,则()A.20 B.15 C.10 D.2512.已知x,y满足不等式,且目标函数z=9x+6y最大值的变化范围[20,22],则t的取值范围()A.[2,4] B.[4,6] C.[5,8] D.[6,7]二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量服从正态分布,若,则_________.14.如图,直线是曲线在处的切线,则________.15.设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则________16.(x+y)(2x-y)5的展开式中x3y3的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左右焦点分别是,点在椭圆上,满足(1)求椭圆的标准方程;(2)直线过点,且与椭圆只有一个公共点,直线与的倾斜角互补,且与椭圆交于异于点的两点,与直线交于点(介于两点之间),是否存在直线,使得直线,,的斜率按某种排序能构成等比数列?若能,求出的方程,若不能,请说理由.18.(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求与的回归直线方程;②叫做篮球馆月惠值,根据①的结论,试估计这四个篮球馆月惠值最大时的值参考数据和公式:,19.(12分)设数列,其前项和,又单调递增的等比数列,,.(Ⅰ)求数列,的通项公式;(Ⅱ)若,求数列的前n项和,并求证:.20.(12分)已知函数.(1)当时,求函数的图象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:.21.(12分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,求函数在上最小值.22.(10分)选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程以及曲线的平面直角坐标方程;(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率,是基础题.2、D【解析】

利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.【详解】的定义域为,,所以在上递减,在上递增,在处取得极小值也即是最小值,,,,,所以在区间上的最大值为.要使在区间上任取三个实数,,均存在以,,为边长的三角形,则需恒成立,且,也即,也即当、时,成立,即,且,解得.所以的取值范围是.故选:D【点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.3、D【解析】

设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,,结合等比数列的性质可求出答案.【详解】设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,,.故选:D.【点睛】本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.4、C【解析】

首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.5、A【解析】

计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算,意在考查学生的计算能力和理解能力.6、B【解析】

在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.【详解】在等差数列的前项和为,则则故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.7、D【解析】

根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.8、C【解析】

根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.9、D【解析】

以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【详解】如图建系,则,,,由,易得,则.故选:D【点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.10、A【解析】

设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.【详解】如图所示,利用排除法,取与重合时的情况.不妨设,延长到,使得.,,,,则,由余弦定理得,,,又,,当平面平面时,,,排除B、D选项;因为,,此时,,当平面平面时,,,排除C选项.故选:A.【点睛】本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题.11、C【解析】

通过二项式展开式的通项分析得到,即得解.【详解】由已知得,故当时,,于是有,则.故选:C【点睛】本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.12、B【解析】

作出可行域,对t进行分类讨论分析目标函数的最大值,即可求解.【详解】画出不等式组所表示的可行域如图△AOB当t≤2时,可行域即为如图中的△OAM,此时目标函数z=9x+6y在A(2,0)取得最大值Z=18不符合题意t>2时可知目标函数Z=9x+6y在的交点()处取得最大值,此时Z=t+16由题意可得,20≤t+16≤22解可得4≤t≤6故选:B.【点睛】此题考查线性规划,根据可行域结合目标函数的最大值的取值范围求参数的取值范围,涉及分类讨论思想,关键在于熟练掌握截距型目标函数的最大值最优解的处理办法.二、填空题:本题共4小题,每小题5分,共20分。13、0.4【解析】

因为随机变量ζ服从正态分布,利用正态曲线的对称性,即得解.【详解】因为随机变量ζ服从正态分布所以正态曲线关于对称,所.【点睛】本题考查了正态分布曲线的对称性在求概率中的应用,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.14、.【解析】

求出切线的斜率,即可求出结论.【详解】由图可知直线过点,可求出直线的斜率,由导数的几何意义可知,.故答案为:.【点睛】本题考查导数与曲线的切线的几何意义,属于基础题.15、【解析】

由椭圆的标准方程,求出焦点的坐标,写出直线方程,与椭圆方程联立,求出弦长,利用定义可得,进而求出。【详解】由知,焦点,所以直线:,代入得,即,设,,故由定义有,,所以。【点睛】本题主要考查椭圆的定义、椭圆的简单几何性质、以及直线与椭圆位置关系中弦长的求法,注意直线过焦点,位置特殊,采取合适的弦长公式,简化运算。16、40【解析】

先求出的展开式的通项,再求出即得解.【详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40【点睛】本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不能,理由见解析【解析】

(1)设,则,由此即可求出椭圆方程;(2)设直线的方程为,联立直线与椭圆的方程可求得,则直线斜率为,设其方程为,联立直线与椭圆方程,结合韦达定理可得关于对称,可求得,假设存在直线满足题意,设,可得,由此可得答案.【详解】解:(1)设,则,,所以椭圆方程为;(2)设直线的方程为,与联立得,∴,因为两直线的倾斜角互补,所以直线斜率为,设直线的方程为,联立整理得,,所以关于对称,由正弦定理得,因为,所以,由上得,假设存在直线满足题意,设,按某种排列成等比数列,设公比为,则,所以,则此时直线与平行或重合,与题意不符,所以不存在满足题意的直线.【点睛】本题主要考查直线与椭圆的位置关系,考查计算能力与推理能力,属于难题.18、(1)见解析,12.5(2)①②20【解析】

(1)运用分层抽样,结合总场次为100,可求得的值,再运用古典概型的概率计算公式可求解果;(2)①由公式可计算的值,进而可求与的回归直线方程;②求出,再对函数求导,结合单调性,可估计这四个篮球馆月惠值最大时的值.【详解】解:(1)抽样比为,所以分别是,6,7,8,5所以两数之和所有可能取值是:10,12,13,15,,,所以分布列为期望为(2)因为所以,,;②,设,所以当递增,当递减所以约惠值最大值时的值为20【点睛】本题考查直方图的实际应用,涉及求概率,平均数、拟合直线和导数等问题,关键是要读懂题意,属于中档题.19、(1),;(2)详见解析.【解析】

(1)当时,,当时,,当时,也满足,∴,∵等比数列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,显然数列是递增数列,∴,即.)20、(1);(2)当时,在上是减函数;当时,在上是增函数;(3)证明见解析.【解析】

(1)当时,,求得其导函数,,可求得函数的图象在处的切线方程;(2)由已知得,得出导函数,并得出导函数取得正负的区间,可得出函数的单调性;(3)当时,,,由(2)得的单调区间,以当方程有两个不相等的实数根,不妨设,且有,,构造函数,分析其导函数的正负得出函数的单调性,得出其最值,所证的不等式可得证.【详解】(1)当时,,所以,,所以函数的图象在处的切线方程为,即;(2)由已知得,,令,得,所以当时,,当时,,所以在上是减函数,在上是增函数;(3)当时,,,由(2)得在上单调递减,在单调递增,所以,且时,,当时,,,所以当方程有两个不相等的实数根,不妨设,且有,,构造函数,则,当时,所以,在上单调递减,且,,由,在上单调递增,.所以.【点睛】本题考查运用导函数求函数在某点的切线方程,讨论函数的单调性,以及证明不等式,关键在于构造适当的函数,得出其导函数的正负,得出所构造的函数的单调性,属于难度题.21、(Ⅰ)见解析;(Ⅱ)当时,函数的最小值是;当时,函数的最小值是【解析】

(1)求出导函数,并且解出它的零点x=,再分区间讨论导数的正负,即可得到函数f(x)的单调区间;

(2)分三种情况加以讨论,结合函数的单调性与函数值的大小比较,即可得到当0<a<ln2时,函数f(x)的最小值是-a;当a≥ln2时,函数f(x)的最小值是ln2-2a.【详解】函数的定义域

为.

因为,令,可得;

当时,;当时,,综上所述:可知函数的单调递增区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论