版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省五地六市联盟2025届高一下数学期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个正四棱锥的底面边长为2,高为,则该正四棱锥的全面积为A.8 B.12 C.16 D.202.已知数列是各项均为正数且公比不等于1的等比数列,对于函数,若数列为等差数列,则称函数为“保比差数列函数”,现有定义在上的如下函数:①,②,③;④,则为“保比差数列函数”的所有序号为()A.①② B.①②④ C.③④ D.①②③④3.若()A. B. C. D.4.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.3.5 B.3 C.-0.5 D.-35.设x、y满足约束条件,则z=2x﹣y的最大值为()A.0 B.0.5 C.1 D.26.在长方体中,,,,则异面直线与所成角的大小为()A. B. C. D.或7.己知函数(,,,)的图象(部分)如图所示,则的解析式是()A. B.C. D.8.已知点A(-1,1)和圆C:(x﹣5)2+(y﹣7)2=4,一束光线从A经x轴反射到圆C上的最短路程是A.6-2 B.8 C.4 D.109.设变量满足约束条件:,则的最小值()A. B. C. D.10.如果数据的平均数为,方差为,则的平均数和方差分别为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若圆:与圆:相交于,两点,且两圆在点处的切线互相垂直,则公共弦的长度是______.12.函数,的反函数为__________.13.已知向量,,且,点在圆上,则等于.14.在中,若,则等于__________.15.已知,,若,则______.16.△ABC中,,,则=_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求三棱柱的高.18.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:零件的个数个2345加工的时间2.5344.51求出y关于x的线性回归方程;2试预测加工10个零件需要多少时间?19.在中,角的对边分别为,且角成等差数列.(1)求角的值;(2)若,求边的长.20.已知函数(1)求函数的单调递减区间;(2)在锐角中,若角,求的值域.21.某工厂共有200名工人,已知这200名工人去年完成的产品数都在区间(单位:万件)内,其中每年完成14万件及以上的工人为优秀员工,现将其分成5组,第1组、第2组第3组、第4组、第5组对应的区间分别为,,,,,并绘制出如图所示的频率分布直方图.(1)选取合适的抽样方法从这200名工人中抽取容量为25的样本,求这5组分别应抽取的人数;(2)现从(1)中25人的样本中的优秀员工中随机选取2名传授经验,求选取的2名工人在同一组的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先求侧面三角形的斜高,再求该正四棱锥的全面积.【详解】由题得侧面三角形的斜高为,所以该四棱锥的全面积为.故选B【点睛】本题主要考查几何体的边长的计算和全面积的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、B【解析】
设数列{an}的公比为q(q≠1),利用保比差数列函数的定义,逐项验证数列{lnf(an)}为等差数列,即可得到结论.【详解】设数列{an}的公比为q(q≠1)①由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;②由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;③由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常数,∴数列{lnf(an)}不为等差数列,不满足题意;④由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;综上,为“保比差数列函数”的所有序号为①②④故选:B.【点睛】本题考查新定义,考查对数的运算性质,考查等差数列的判定,考查学生分析解决问题的能力,属于中档题.3、D【解析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.4、D【解析】
因为错将其中一个数据105输入为15,所以此时求出的数比实际的数差是,因此平均数之间的差是.故答案为D5、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,联立,解得A(2,3),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过A时,直线在y轴上的截距最小,z有最大值为2×2﹣3=1.故选:C.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.6、C【解析】
平移CD到AB,则即为异面直线与所成的角,在直角三角形中即可求解.【详解】连接AC1,CD//AB,可知即为异面直线与所成的角,在中,,故选.【点睛】本题考查异面直线所成的角.常用方法:1、平移直线到相交;2、向量法.7、C【解析】
根据图象可知,利用正弦型函数可求得;根据最大值和最小值可确定,利用及可求得,从而得到函数解析式.【详解】由图象可知,的最小正周期:又又,且,,即,本题正确选项:【点睛】本题考查根据图象求解三角函数解析式的问题,关键是能够明确由最大值和最小值确定;由周期确定;通常通过最值点来进行求解,属于常考题型.8、B【解析】
点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,光线从点A经x轴反射到圆周C的路程最短,最短为|BC|﹣R.【详解】由反射定律得点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,最短距离为|BC|﹣R=﹣2=10﹣2=1,故光线从点A经x轴反射到圆周C的最短路程为1.故选B.【点睛】本题考查光线的反射定律的应用,以及两点间的距离公式的应用.9、D【解析】
如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.10、D【解析】
根据平均数和方差的公式,可推导出,,,的平均数和方差.【详解】因为,所以,所以的平均数为;因为,所以,故选:D.【点睛】本题考查平均数与方差的公式计算,考查对概念的理解与应用,考查基本运算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据两圆在点处的切线互相垂直,得出是直角三角形,求出,然后两圆相减求出公共弦的直线方程,运用点到直线的距离公式求出圆心到公共弦的距离,进而求出公共弦长.【详解】由题意,圆圆心坐标,半径,圆圆心坐标,半径,因为两圆相交于点,且两圆在点处的切线互相垂直,所以是直角三角形,,所以,由两点间距离公式,,所以,解得,所以圆:,两圆方程相减,得,即,所以公共弦:,圆心到公共弦的距离,故公共弦长故答案为:【点睛】本题主要考查两圆公共弦的方程、圆弦长的求法和点到直线的距离公式,考查学生的分析能力,属于基础题.12、【解析】
将函数变形为的形式,然后得到反函数,注意定义域.【详解】因为,所以,则反函数为:且.【点睛】本题考查反三角函数的知识,难度较易.给定定义域的时候,要注意函数定义域.13、【解析】试题分析:因为且在圆上,所以,解得,所以.考点:向量运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.14、;【解析】
由条件利用三角形内角和公式求得,再利用正弦定理即可求解.【详解】在中,,,,即,,故答案为:【点睛】本题考查了正弦定理解三角形,需熟记定理的内容,属于基础题.15、【解析】
首先令,分别把解出来,再利用整体换元的思想即可解决.【详解】令所以令,所以所以【点睛】本题主要考查了整体换元的思想以及对数之间的运算和公式法解一元二次方程.整体换元的思想是高中的一个重点,也是高考常考的内容需重点掌握.16、【解析】试题分析:三角形中,,由,得又,所以有正弦定理得即即A为锐角,由得,因此考点:正余弦定理三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)连接,,作为棱的中点,连结,,由平面平面,得到平面,则,再由,即可证明平面,从而得证;(2)根据等体积法求出点面距.【详解】(1)证明:连接,.∵,,∴是等边三角形.作为棱的中点,连结,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴平行四边形是菱形.∴.又,分别为,的中点,∴,∴.又,平面,平面.∴平面.又平面,∴.(2)解:连接,∵,,∴为正三角形.∵为的中点,∴,同理可得又∵平面平面,且平面平面,平面,∴平面.∴,又三棱柱的高即点到平面的距离.在中,,,则.又∵,∴,则.【点睛】本题考查线面垂直,线线垂直的证明,三棱锥的体积及点到平面的距离的计算,属于中档题.18、(1);(2)小时【解析】
(1)由已知数据求得与的值,则线性回归方程可求;(2)在(1)中求得的回归方程中,取求得值即可.【详解】(1)由表中数据得:,,,,,,.(2)将代入回归直线方程,(小时).预测加工10个零件需要小时.【点睛】本题考查了回归分析,解答此类问题的关键是利用公式计算,计算要细心.19、(1).(2)【解析】
(1)根据等差数列的性质,与三角形三内角和等于即可解出角C的值.(2)将已知数带入角C的余弦公式,即可解出边c.【详解】解:(1)∵角,,成等差数列,且为三角形的内角,∴,,∴.(2)由余弦定理,得【点睛】本题考查等差数列、余弦定理,属于基础题.20、(1),;(2)【解析】
(1)利用二倍角、辅助角公式化简,然后利用单调区间公式求解单调区间;(2)根据条件求解出的范围,然后再求解的值域.【详解】(1),令,解得:,所以单调减区间为:,;(2)由锐角三角形可知:,所以,则,又,所以,,则.【点睛】本题考查三角恒等变换以及三角函数值域问题,难度较易.根据三角形形状求解角范围的时候,要注意到隐含条件的使用.21、(1)第1组:2;第2组:8,;第3组:9;第4组:3;第5组:3(2)【解析】
(1)根据频率之和为列方程,解方程求得的值.然后根据分层抽样的计算方法,计算出每组抽取的人数.(2)利用列举法,结合古典概型概率计算公式,计算出所求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文经典美文千山笔记
- 2024二手房购房定金合同范本二手房购房合同范本
- 2024赊欠买卖货物合同样书
- 2024装饰维修合同范本
- 2024《电大合同法网考》
- 2024理财合同可信范文
- 深圳大学《中国音乐史(中国流行音乐史)》2021-2022学年第一学期期末试卷
- 深圳大学《医学统计学》2021-2022学年第一学期期末试卷
- 殡葬用品销售合同(2篇)
- 骑车转让买卖协议书(2篇)
- 《一起来分类》(教学设计)-2024-2025学年一年级上册数学北师大版
- 肺胀(慢性阻塞性肺病)中医优势病种诊疗方案
- 第1单元圆易错题(单元测试)-2024-2025学年六年级上册数学北师大版
- 教师资格考试小学数学面试试题及解答参考(2024年)
- 统编版(2024新版)历史七年级上册:期中+期末 2套学情评估测试卷(含答案)
- 2024年专技人员公需科目考试答
- 2024年新改版人教版三年级上册道德与法治全册知识点
- 2024年高压电工特种作业考试初审复审训练题库及答案(共333题)
- 2022电动汽车充电设施建设技术导则
- 落实《中小学德育工作指南》制定的实施方案(pdf版)
- 中国软件行业基准数据报告(SSM-BK-202409)
评论
0/150
提交评论