版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省凌源市联合校2025届高一下数学期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为()A. B.C. D.2.函数f(x)=x,g(x)=x2-x+2,若存在x1,x2A.12 B.22 C.23 D.323.已知角的终边经过点,则的值是()A. B. C. D.4.如图是一个正四棱锥,它的俯视图是()A. B.C. D.5.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.设的三个内角成等差数列,其外接圆半径为2,且有,则三角形的面积为()A. B. C.或 D.或7.直线:与圆的位置关系为()A.相离 B.相切 C.相交 D.无法确定8.集合,则()A. B. C. D.9.已知,,则在方向上的投影为()A. B. C. D.10.如图,是圆的直径,,假设你往圆内随机撒一粒黄豆,则它落到阴影部分的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数f(x)=2cos(x)﹣1的对称轴为_____,最小值为_____.12.甲船在岛的正南处,,甲船以每小时的速度向正北方向航行,同时乙船自出发以每小时的速度向北偏东的方向驶去,甲、乙两船相距最近的距离是_____.13.若无穷等比数列的各项和等于,则的取值范围是_____.14.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____15.已知数列的前n项和,则___________.16.已知,函数的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,点在直线上.(1)求数列的通项公式;(2)设,求数列的前项和.18.已知函数,求其定义域.19.已知关于直线对称,且圆心在轴上.(1)求的标准方程;(2)已知动点在直线上,过点引的两条切线、,切点分别为.①记四边形的面积为,求的最小值;②证明直线恒过定点.20.在边长为2的菱形中,,为的中点.(1)用和表示;(2)求的值.21.某班在一次个人投篮比赛中,记录了在规定时间内投进个球的人数分布情况:进球数(个)012345投进个球的人数(人)1272其中和对应的数据不小心丢失了,已知进球3个或3个以上,人均投进4个球;进球5个或5个以下,人均投进2.5个球.(1)投进3个球和4个球的分别有多少人?(2)从进球数为3,4,5的所有人中任取2人,求这2人进球数之和为8的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
连接DF,因为DF与AE平行,所以∠DFD即为异面直线AE与DF所成角的平面角,设正方体的棱长为2,则FD=FD=,由余弦定理得cos∠DFD==.2、B【解析】
由题得g(x构造h(x)=g(x)-f(x)=x2-2x+2∈【详解】由fx1+f令h(x)=g(x)-f(x)=xhxn=hx1N的最大值为22.故选:B.【点睛】本题考查函数的最值的求法,注意运用转化思想,以及二次函数在闭区间上的最值求法,考查运算能力,属于中档题.3、D【解析】
首先计算出,根据三角函数定义可求得正弦值和余弦值,从而得到结果.【详解】由三角函数定义知:,,则:本题正确选项:【点睛】本题考查任意角三角函数的求解问题,属于基础题.4、D【解析】
根据正四棱锥的特征直接判定即可.【详解】正四棱锥俯视图可以看到四条侧棱与顶点,且整体呈正方形.故选:D【点睛】本题主要考查了正四棱锥的俯视图,属于基础题.5、D【解析】
根据三角函数图象的平移变换可直接得到图象变换的过程.【详解】因为,所以向右平移个单位即可得到的图象.故选:D.【点睛】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.6、C【解析】
的三个内角成等差数列,可得角A、C的关系,将已知条件中角C消去,利用三角函数和差角公式展开即可求出角A的值,再由三角形面积公式即可求得三角形面积.【详解】的三个内角成等差数列,则,解得,所以,所以,整理得,则或,因为,解得或.①当时,;②当时,,故选C.【点睛】本题考查了三角形内角和定理、等差数列性质、三角函数和差角公式、三角函数辅助角公式,综合性较强,属于中档题;解题中主要是通过消元构造关于角A的三角方程,其中利用三角函数和差角公式和辅助角公式对式子进行化解是解题的关键.7、C【解析】
求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.8、C【解析】
先求解不等式化简集合A和B,再根据集合的交集运算求得结果即可.【详解】因为集合,集合或,所以.故本题正确答案为C.【点睛】本题考查一元二次不等式,分式不等式的解法和集合的交集运算,注意认真计算,仔细检查,属基础题.9、A【解析】在方向上的投影为,选A.10、B【解析】
先根据条件计算出阴影部分的面积,然后计算出整个圆的面积,利用几何概型中的面积模型即可计算出对应的概率.【详解】设圆的半径为,因为,所以,又因为,所以落到阴影部分的概率为.故选:B.【点睛】本题考查几何概型中的面积模型的简单应用,难度较易.注意几何概型的常见概率公式:.二、填空题:本大题共6小题,每小题5分,共30分。11、﹣3【解析】
利用余弦函数的图象的对称性,余弦函数的最值,求得结论.【详解】解:对于函数,令,求得,根据余弦函数的值域可得函数的最小值为,故答案为:;.【点睛】本题主要考查余弦函数的图象的对称性,余弦函数的最值,属于基础题.12、【解析】
根据条件画出示意图,在三角形中利用余弦定理求解相距的距离,利用二次函数对称轴及可求解出最值.【详解】假设经过小时两船相距最近,甲、乙分别行至,,如图所示,可知,,,.当小时时甲、乙两船相距最近,最近距离为.【点睛】本题考查解三角形的实际应用,难度较易.关键是通过题意将示意图画出来,然后将待求量用未知数表示,最后利用函数思想求最值.13、.【解析】
根据题意可知,,从而得出,再由,即可求出的取值范围.【详解】解:由题意可知,,且,,,,或,故的取值范围是,故答案为:.【点睛】本题主要考查等比数列的极限问题,解题时要熟练掌握无穷等比数列的极限和,属于基础题.14、【解析】
根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。15、17【解析】
根据所给的通项公式,代入求得,并由代入求得.即可求得的值.【详解】数列的前n项和,则,而,,所以,则,故答案为:.【点睛】本题考查了数列前n项和通项公式的应用,递推法求数列的项,属于基础题.16、5【解析】
变形后利用基本不等式可得最小值.【详解】∵,∴4x-5>0,∴当且仅当时,取等号,即时,有最小值5【点睛】本题考查利用基本不等式求最值,凑出可利用基本不等式的形式是解决问题的关键,使用基本不等式时要注意“一正二定三相等”的法则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)先由题意得到,求出,再由,作出,得到数列为等比数列,进而可求出其通项公式;(2)先由(1)得到,再由错位相减法,即可求出结果.【详解】解:(1)由题可得.当时,,即.由题设,,两式相减得.所以是以2为首项,2为公比的等比数列,故.(2)由(1)可得,所以,.两边同乘以得.上式右边错位相减得.所以.化简得.【点睛】本题主要考查求数列的通项公式,以及数列的前项和,熟记等比数列的通项公式与求和公式,以及错位相减法求数列的和即可,属于常考题型.18、【解析】
由使得分式和偶次根式有意义的要求可得到一元二次不等式,解不等式求得结果.【详解】由题意得:,即,解得:定义域为【点睛】本题考查具体函数定义域的求解问题,关键是明确使得分式和偶次根式有意义的基本要求,由此构造不等式求得结果.19、(1)(2)①②证明见解析【解析】
(1)根据圆的一般式,可得圆心坐标,将圆心坐标代入直线方程,结合圆心在轴上,即可求得圆C的标准方程.(2)①根据切线性质及切线长定理,表示出的长,根据圆的性质可知当最小时,即可求得面积的最小值;②设出M点坐标,根据两条切线可知M、A、C、B四点共圆,可得圆心坐标及半径,进而求得的方程,根据两个圆公共弦所在直线方程求法即可得直线方程,进而求得过的定点坐标.【详解】(1)由题意知,圆心在直线上,即,又因为圆心在轴上,所以,由以上两式得:,,所以.故的标准方程为.(2)①如图,的圆心为,半径,因为、是的两条切线,所以,,故又因为,根据平面几何知识,要使最小,只要最小即可.易知,当点坐标为时,.此时.②设点的坐标为,因为,所以、、、四点共圆.其圆心为线段的中点,,设所在的圆为,所以的方程为:,化简得:,因为是和的公共弦,所以,两式相减得,故方程为:,当时,,所以直线恒过定点.【点睛】本题考查了圆的一般方程与标准方程的应用,圆中三角形面积问题的应用,直线过定点问题,综合性强,属于难题.20、(1);(2)-1【解析】
(1)由平面向量基本定理可得:.(2)由数量积运算可得:,运算可得解.【详解】解:(1).(2).【点睛】本题考查了平面向量基本定理及数量积运算,属基础题.21、(1)投进3个球和4个球的分别有2人和2人;(2).【解析】
(1)设投进3个球和4个球的分别有,人,则,解方程组即得解.(2)利用古典概型的概率求这2人进球数之和为8的概率.【详解】解:(1)设投进3个球和4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林省2024七年级数学上册第2章整式及其加减专题训练5题型整合整式化简求值课件新版华东师大版
- 幼儿户外活动案例分析
- 水灾应急演练
- 脑梗死偏瘫康复治疗
- 火灾逃生演练AE
- 红领巾说课稿
- 城市道路人行道铺设合同模板
- 农村耕地租赁合同:农业营销
- 桥梁建设杂工施工合同
- 办公园区耐磨地面施工合同
- 药剂科运用PDCA循环减少门诊药房药品调剂差错PDCA成果汇报
- 5万吨年漂白竹浆纸项目项目可行性申请报告
- 《五育并举 丰盈孩子的心灵》 论文
- 中国电信知识普及100题
- 生态学课件 13生态系统中的物质循环
- 物品接收单模板(接受联、存根联)
- 16G362 钢筋混凝土结构预埋件
- GA 1811.2-2022传媒设施反恐怖防范要求第2部分:广播电视传输覆盖网设施
- (完整word版)汉语拼音四线三格(63格)模板
- 5.3凸透镜成像规律五幅图
- GB/T 5226.1-2019机械电气安全机械电气设备第1部分:通用技术条件
评论
0/150
提交评论