2025届浙江省金华市高一数学第二学期期末调研试题含解析_第1页
2025届浙江省金华市高一数学第二学期期末调研试题含解析_第2页
2025届浙江省金华市高一数学第二学期期末调研试题含解析_第3页
2025届浙江省金华市高一数学第二学期期末调研试题含解析_第4页
2025届浙江省金华市高一数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省金华市高一数学第二学期期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度2.某学校从编号依次为01,02,…,72的72个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为12,21,则该样本中来自第四组的学生的编号为()A.30 B.31 C.32 D.333.的斜二测直观图如图所示,则原的面积为()A. B.1 C. D.24.设等比数列的公比为,其前项的积为,并且满足条件:;给出下列论:①;②;③值是中最大值;④使成立的最大自然数等于198.其中正确的结论是()A.①③ B.①④ C.②③ D.②④5.设等差数列{an}的前n项的和Sn,若a2+a8=6,则S9=()A.3 B.6 C.27 D.546.已知向量,,若与的夹角为,则()A.2 B. C. D.17.以点为圆心,且经过点的圆的方程为()A. B.C. D.8.执行如图所示的程序框图,若输入的,则输出A. B. C. D.9.若圆上有且仅有两点到直线的距离等于1,则实数r的取值范围为()A. B. C. D.10.已知,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正方形,向正方形内任投一点,则的面积大于正方形面积四分之一的概率是______.12.已知,,是与的等比中项,则最小值为_________.13.设,向量,,若,则__________.14.函数的最小正周期是______.15.若数列满足,,则数列的通项公式______.16.已知函数,该函数零点的个数为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.直线经过点,且与圆相交与两点,截得的弦长为,求的方程.18.若,解关于的不等式.19.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40"m,则电视塔的高度为多少?20.某企业生产一种产品,质量测试分为:指标不小于为一等品;指标不小于且小于为二等品;指标小于为三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品亏损元。现对学徒甲和正式工人乙生产的产品各件的检测结果统计如下:测试指标甲乙根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率。求:(1)乙生产一件产品,盈利不小于元的概率;(2)若甲、乙一天生产产品分别为件和件,估计甲、乙两人一天共为企业创收多少元?(3)从甲测试指标为与乙测试指标为共件产品中选取件,求两件产品的测试指标差的绝对值大于的概率.21.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】∵,∴要得到函数的图像,只需将函数的图像向左平移个单位.选B.2、A【解析】

根据相邻的两个组的编号确定组矩,即可得解.【详解】由题:样本中相邻的两个组的编号分别为12,21,所以组矩为9,则第一组所取学生的编号为3,第四组所取学生的编号为30.故选:A【点睛】此题考查系统抽样,关键在于根据系统抽样方法确定组矩,依次求得每组选取的编号.3、D【解析】

根据直观图可计算其面积为,原的面积为,由得结论.【详解】由题意可得,所以由,即.故选:D.【点睛】本题考查了斜二侧画直观图,三角形的面积公式,需要注意的是与原图与直观图的面积之比为,属于基础题.4、B【解析】

利用等比数列的性质及等比数列的通项公式判断①正确;利用等比数列的性质及不等式的性质判断②错误;利用等比数列的性质判断③错误;利用等比数列的性质判断④正确,,从而得出结论.【详解】解:由可得又即由,即,结合,所以,,即,,即,即①正确;又,所以,即,即②错误;因为,即值是中最大值,即③错误;由,即,即,又,即,即④正确,综上可得正确的结论是①④,故选:B.【点睛】本题考查了等比数列的性质及不等式的性质,重点考查了运算能力,属中档题.5、C【解析】

利用等差数列的性质和求和公式,即可求得的值,得到答案.【详解】由题意,等差数列的前n项的和,由,根据等差数列的性质,可得,所以,故选:C.【点睛】本题主要考查了等差数列的性质,以及等差数列的前n项和公式的应用,着重考查了推理与运算能力,属于基础题.6、B【解析】

先计算与的模,再根据向量数量积的性质即可计算求值.【详解】因为,,所以,.又,所以,故选B.【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.7、B【解析】

通过圆心设圆的标准方程,代入点即可.【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.8、B【解析】

首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】由流程图可知,程序输出的值为:,即.故选B.【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.9、B【解析】因为圆心(5,1)到直线4x+3y+2=0的距离为=5,又圆上有且仅有两点到直线4x+3y+2=0的距离为1,则4<r<6.选B.点睛:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.10、C【解析】

由放缩法可得出,再利用特殊值法以及不等式的基本性质可判断各选项中不等式的正误.【详解】,,可得.取,,,则A、D选项中的不等式不成立;取,,,则B选项中的不等式不成立;且,由不等式的基本性质得,C选项中的不等式成立.故选:C.【点睛】本题考查不等式正误的判断,一般利用不等式的性质或特殊值法进行判断,考查推理能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

向正方形内任投一点,所有等可能基本事件构成正方形区域,当的面积大于正方形面积四分之一的所有基本事件构成区域矩形区域,由面积比可得概率值.【详解】如图边长为1的正方形中,分别是的中点,当点在线段上时,的面积为,所以的面积大于正方形面积四分之一,此时点应在矩形内,由几何概型得:,故填.【点睛】本题考查几何概型,利用面积比求概率值,考查对几何概型概率计算.12、1【解析】

根据等比中项定义得出的关系,然后用“1”的代换转化为可用基本不等式求最小值.【详解】由题意,所以,所以,当且仅当,即时等号成立.所以最小值为1.故答案为:1.【点睛】本题考查等比中项的定义,考查用基本不等式求最值.解题关键是用“1”的代换找到定值,从而可用基本不等式求最值.13、【解析】从题设可得,即,应填答案.14、【解析】

由二倍角的余弦函数公式化简解析式可得,根据三角函数的周期性及其求法即可得解.【详解】.由周期公式可得:.故答案为【点睛】本题主要考查了二倍角的余弦函数公式的应用,考查了三角函数的周期性及其求法,属于基本知识的考查.15、【解析】

在等式两边取倒数,可得出,然后利用等差数列的通项公式求出的通项公式,即可求出.【详解】,等式两边同时取倒数得,.所以,数列是以为首项,以为公差的等差数列,.因此,.故答案为:.【点睛】本题考查利用倒数法求数列通项,同时也考查了等差数列的定义,考查计算能力,属于中等题.16、3【解析】

令,可得或;当时,可解得为函数一个零点;当时,可知,根据的范围可求得零点;综合两种情况可得零点总个数.【详解】令,可得:或当时,或(舍)为函数的一个零点当时,,,为函数的零点综上所述,该函数的零点个数为:个本题正确结果:【点睛】本题考查函数零点个数的求解,关键是能够将问题转化为方程根的个数的求解,涉及到余弦函数零点的求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或【解析】

直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.18、当0<a<1时,原不等式的解集为,当a<0时,原不等式的解集为;当a=0时,原不等式的解集为⌀.【解析】

试题分析:(1),利用,可得,分三种情况对讨论的范围:0<a<1,a<0,a=0,分别求得相应情况下的解集即可.试题解析:不等式>1可化为>0.因为a<1,所以a-1<0,故原不等式可化为<0.故当0<a<1时,原不等式的解集为,当a<0时,原不等式的解集为,当a=0时,原不等式的解集为⌀.19、40m.【解析】试题分析:本题是解三角形的实际应用题,根据题意分析出图中的数据,即∠ADB=30°,∠ACB=45°,所以,可以得出在Rt△ABD中,BD=AB,在Rt△ABC中,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,代入数据,运算即可得出结果.试题解析:根据题意得,在Rt△ABD中,∠ADB=30°,∴BD=AB,在Rt△ABC中,∠ACB=45°,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,∴3AB2=AB2+CD2-2AB·CDcos120°整理得AB2-20AB-800=0,解得,AB=40或AB=-20(舍).即电视塔的高度为40m考点:解三角形.20、(1);(2)元;(3)【解析】

(1)设事件表示“乙生产一件产品,盈利不小于25元”,即该产品的测试指标不小于80,由此能求出乙生产一件产品,盈利不小于25元的概率.(2)由表格知甲生产的一等品、二等品、三等品比例为即,所以甲一天生产30件产品,其中一等品有3件,二等品有21件,三等品有6件;由表格知乙生产的一等品、二等品、三等品比例为,所以乙一天生产20件产品,其中一等品有6件,二等品有12件,三等品有2件,由此能求出甲、乙两人一天共为企业创收1195元.(3)设甲测试指标为,的7件产品用,,,,,,表示,乙测试指标为,的7件产品用,表示,利用列举法能求出两件产品的测试指标差的绝对值大于10的概率.【详解】(1)设事件表示“乙生产一件产品,盈利不小于元”,即该产品的测试指标不小于,则;(2)甲一天生产件产品,其中一等品有件;二等品有件;三等品有件;甲一天生产件产品,其中一等品有件;二等品有件;三等品有,即甲、乙两人一天共为企业创收元;(3)设甲测试指标为的件产品用,,,,表示,乙测试指标为的件产品用,表示,用(,且)表示从件产品中选取件产品的一个结果.不同结果为,,,,,,,,,,,,,,,,,,,,,,共有36个不同结果.设事件表示“选取的两件产品的测试指标差的绝对值大于”,即从甲、乙生产的产品中各取件产品,不同的结果为,,,,,,,,,,,,,,共有个不同结果.则.【点睛】本题主要考查古典概型概率的求法,即按照古典概型的概率计算公式分别求出基本事件总数以及有利事件数即可算出概率,以及列举法和随机抽样的应用.21、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论