版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
洛阳市重点中学2025届数学高一下期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.()A.0 B.1 C.-1 D.22.已知角α终边上一点P(-2,3),则cos(A.32 B.-32 C.3.已知均为实数,则“”是“构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件4.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()A. B. C. D.5.已知数列是各项均为正数且公比不等于1的等比数列,对于函数,若数列为等差数列,则称函数为“保比差数列函数”,现有定义在上的如下函数:①,②,③;④,则为“保比差数列函数”的所有序号为()A.①② B.①②④ C.③④ D.①②③④6.已知向量,,若,共线,则实数()A. B. C. D.67.已知点A(-1,1)和圆C:(x﹣5)2+(y﹣7)2=4,一束光线从A经x轴反射到圆C上的最短路程是A.6-2 B.8 C.4 D.108.已知,则向量与向量的夹角是()A. B. C. D.9.下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则10.平面过正方体ABCD—A1B1C1D1的顶点A,,,,则m,n所成角的正弦值为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列{an}中,a1<0,{an}是递增数列,则满足条件的q的取值范围是______________.12.已知当时,函数(且)取得最小值,则时,的值为__________.13.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.14.函数,的值域为________15.已知中,,则面积的最大值为_____16.函数的最小正周期是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,值域为,求常数、的值;18.已知函数,且.(1)求的值;(2)若在上有且只有一个零点,,求的取值范围.19.已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当弦AB被点P平分时,写出直线l的方程;(2)当直线l的倾斜角为45º时,求弦AB的长.20.已知菱形ABCD的边长为2,M为BD上靠近D的三等分点,且线段.(1)求的值;(2)点P为对角线BD上的任意一点,求的最小值.21.已知平面向量,.(1)若与垂直,求;(2)若,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
直接利用三角函数的诱导公式化简求值.【详解】sin210°=sin(180°+30°)+cos60°=﹣sin30°+cos60°.故选A.【点睛】本题考查利用诱导公式化简求值,是基础的计算题.2、A【解析】角α终边上一点P(-2,3),所以cos(3、A【解析】解析:若构成等比数列,则,即是必要条件;但时,不一定有成等比数列,如,即是不充分条件.应选答案A.4、B【解析】由三视图可知,该几何体是一个棱长为的正方体挖去一个圆锥的组合体,正方体体积为,圆锥体积为几何体的体积为,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5、B【解析】
设数列{an}的公比为q(q≠1),利用保比差数列函数的定义,逐项验证数列{lnf(an)}为等差数列,即可得到结论.【详解】设数列{an}的公比为q(q≠1)①由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;②由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq2=2lnq是常数,∴数列{lnf(an)}为等差数列,满足题意;③由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnan+1﹣an不是常数,∴数列{lnf(an)}不为等差数列,不满足题意;④由题意,lnf(an)=ln,∴lnf(an+1)﹣lnf(an)=lnlnlnq是常数,∴数列{lnf(an)}为等差数列,满足题意;综上,为“保比差数列函数”的所有序号为①②④故选:B.【点睛】本题考查新定义,考查对数的运算性质,考查等差数列的判定,考查学生分析解决问题的能力,属于中档题.6、C【解析】
利用向量平行的性质直接求解.【详解】向量,,共线,,解得实数.故选:.【点睛】本题主要考查向量平行的性质等基础知识,考查运算求解能力,是基础题.7、B【解析】
点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,光线从点A经x轴反射到圆周C的路程最短,最短为|BC|﹣R.【详解】由反射定律得点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,最短距离为|BC|﹣R=﹣2=10﹣2=1,故光线从点A经x轴反射到圆周C的最短路程为1.故选B.【点睛】本题考查光线的反射定律的应用,以及两点间的距离公式的应用.8、C【解析】试题分析:根据已知可得:,所以,所以夹角为,故选择C考点:向量的运算9、C【解析】试题分析:选项A中,条件应为;选项B中当时不成立;选项D中,结论应为;C正确.考点:不等式的性质.10、A【解析】
试题分析:如图,设平面平面=,平面平面=,因为平面,所以,则所成的角等于所成的角.延长,过作,连接,则为,同理为,而,则所成的角即为所成的角,即为,故所成角的正弦值为,选A.【点睛】求解本题的关键是作出异面直线所成的角,求异面直线所成角的步骤是:平移定角、连线成形、解形求角、得钝求补.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:由题意可得,∴,解得0<q<1考点:等比数列的性质12、3【解析】
先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.13、【解析】
点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.14、【解析】
先求的值域,再求的值域即可.【详解】因为,故,故.故答案为:【点睛】本题主要考查了余弦函数的值域与反三角函数的值域等,属于基础题型.15、【解析】
设,则,根据面积公式得,由余弦定理求得代入化简,由三角形三边关系求得,由二次函数的性质求得取得最大值.【详解】解:设,则,根据面积公式得,由余弦定理可得,可得:,由三角形三边关系有:,且,解得:,故当时,取得最大值,故答案为:.【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.16、【解析】
将三角函数化简为标准形式,再利用周期公式得到答案.【详解】由于所以【点睛】本题考查了三角函数的化简,周期公式,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,;或,;【解析】
先利用辅助角公式化简,再根据,值域为求解即可.【详解】.又则,当时,,此时当时,,此时故,;或,;【点睛】本题主要考查了三角函数的辅助角公式以及三角函数值域的问题,需要根据自变量的范围求出值域,同时注意正弦函数部分的系数正负,属于中等题型.18、(1)(2)【解析】
(1)利用降次公式、辅助角公式化简表达式,利用求得的值.(2)令,结合的取值范围以及三角函数的零点列不等式,解不等式求得的取值范围.【详解】(1),,,即.(2)令,则,,,在上有且只有一个零点,,,的取值范围为.【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.19、(1)(2)【解析】分析:(1)为的中点,故,所以斜率,由此求解直线方程(2)已知直线方程,利用半径和点到直线的距离,求解弦长.详解:(1)P为AB中点C(1,0),P(2,2)(2)的方程为由已知,又直线过点P(2,2)直线的方程为即x-y=0C到直线l的距离,点睛:利用圆与直线的几何性质解圆有关的问题常见解法,圆心到直线的距离、半径、弦长之间的关系为.20、(1),(2)【解析】
(1)由结合,可求出,从而得到(2)建立直角坐标系,设,可得到,然后利用二次函数的知识求出最小值【详解】(1)如图,四边形ABCD为菱形,所以所以因为,所以可解得,所以所以是等边三角形,故(2)以A为原点,所在直线为x轴建立如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版淋浴房智能浴室环境监测服务合同4篇
- 2025年度车牌租赁与押金退还管理规范合同4篇
- 美发店与发型师2025年度劳务合同3篇
- 二零二五年度新型节能门窗研发安装工程合同4篇
- 二零二五年度工业废料处理承包合同4篇
- 2025年度养老院食堂服务承包合同4篇
- 2025年销售部劳动合同加班调休范本
- 2025年度民房买卖资金监管服务合同范本4篇
- 2025年度大学教授产学研合作聘用合同样本4篇
- 2025年度民宿布草租赁与景区合作开发合同4篇
- 2024年考研英语(一)真题及参考答案
- 2024年采购代发货合作协议范本
- 工业自动化设备维护保养指南
- 《向心力》参考课件4
- 2024至2030年中国膨润土行业投资战略分析及发展前景研究报告
- 【地理】地图的选择和应用(分层练) 2024-2025学年七年级地理上册同步备课系列(人教版)
- JBT 14588-2023 激光加工镜头 (正式版)
- 2024年四川省成都市树德实验中学物理八年级下册期末质量检测试题含解析
- 廉洁应征承诺书
- 2023年四川省成都市中考物理试卷真题(含答案)
- 泵车述职报告
评论
0/150
提交评论