版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平顶山市重点中学2025届数学高一下期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,,的部分图象如图所示,则函数表达式为()A. B.C. D.2.已知,则下列结论正确的是()A. B. C. D.不能确定3.若,则()A. B. C.2 D.4.已知函数的零点是和(均为锐角),则()A. B. C. D.5.在中,若,则的形状是()A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定6.已知平面向量=(1,-3),=(4,-2),与垂直,则是()A.2 B.1 C.-2 D.-17.设函数的图象为,则下列结论正确的是()A.函数的最小正周期是B.图象关于直线对称C.图象可由函数的图象向左平移个单位长度得到D.函数在区间上是增函数8.在中,若,则角的大小为()A. B. C. D.9.如图所示,等边的边长为2、为的中点,且也是等边三角形,若以点为中心按逆时针方向旋转后到达的位置,则在转动过程中的取值范围是()A. B. C. D.10.向量,若,则的值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设向量,,______.12.已知某中学高三学生共有800人参加了数学与英语水平测试,现学校决定利用随机数表法从中抽取100人的成绩进行统计,先将800人按001,002,…,800进行编号.如果从第8行第7列的数开始从左向右读,(下面是随机数表的第7行至第9行)844217533157245506887704744767217633502683925316591692753562982150717512867363015807443913263321134278641607825207443815则最先抽取的2个人的编号依次为_____.13.一个圆锥的侧面积为,底面积为,则该圆锥的体积为________.14.已知函数,对于下列说法:①要得到的图象,只需将的图象向左平移个单位长度即可;②的图象关于直线对称:③在内的单调递减区间为;④为奇函数.则上述说法正确的是________(填入所有正确说法的序号).15.已知,则____.16.已知,,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.“精准扶贫”的重要思想最早在2013年11月提出,到湘西考察时首次作出“实事求是,因地制宜,分类指导,精准扶贫”的重要指导。2015年在贵州调研时强调要科学谋划好“十三五”时期精准扶贫开发工作,确保贫困人口到2020年如期脱贫。某农科所实地考察,研究发现某贫困村适合种植A、B两种药材,可以通过种植这两种药材脱贫。通过大量考察研究得到如下统计数据:药材A的亩产量约为300公斤,其收购价格处于上涨趋势,最近五年的价格如下表:编号12345年份20152016201720182019单价(元/公斤)1820232529药材B的收购价格始终为20元/公斤,其亩产量的频率分布直方图如下:(1)若药材A的单价(单位:元/公斤)与年份编号具有线性相关关系,请求出关于的回归直线方程,并估计2020年药材A的单价;(2)用上述频率分布直方图估计药材B的平均亩产量,若不考虑其他因素,试判断2020年该村应种植药材A还是药材B?并说明理由.附:,.18.如图,在四棱锥中,,底面是矩形,侧面底面,是的中点.(1)求证:平面;(2)求证:平面.19.某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):季度季度编号x销售额y(百万元)(1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;(2)求关于的线性回归方程,并预测该公司的销售额.附:线性回归方程:其中,参考数据:.20.如图,已知三棱柱的侧棱垂直于底面,,,点,分别为和的中点.(1)若,求三棱柱的体积;(2)证明:平面;(3)请问当为何值时,平面,试证明你的结论.21.已知直线的方程为,其中.(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求.【详解】由图像知,,,解得,因为函数过点,所以,,即,解得,因为,所以,.故选:A【点睛】本题考查根据图像求正弦型函数的解析式,三角函数诱导公式,属于基础题.2、C【解析】
根据题意,求出与的值,比较易得,变形可得答案.【详解】解:根据题意,,,易得,则有,故选:C.【点睛】本题主要考查不等式的大小比较,属于基础题.3、D【解析】
将转化为,结合二倍角的正切公式即可求出.【详解】故选D【点睛】本题主要考查了二倍角的正切公式,关键是将转化为,利用二倍角的正切公式求出,属于基础题.4、B【解析】
将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【详解】的零点是方程的解即均为锐角故答案为B【点睛】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.5、A【解析】
由正弦定理得,再由余弦定理求得,得到,即可得到答案.【详解】因为在中,满足,由正弦定理知,代入上式得,又由余弦定理可得,因为C是三角形的内角,所以,所以为钝角三角形,故选A.【点睛】本题主要考查了利用正弦定理、余弦定理判定三角形的形状,其中解答中合理利用正、余弦定理,求得角C的范围是解答本题的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】
试题分析:,由与垂直可知考点:向量垂直与坐标运算7、B【解析】
利用函数的周期判断A的正误;通过x=函数是否取得最值判断B的正误;利用函数的图象的平移判断C的正误,利用函数的单调区间判断D的正误.【详解】对于A,f(x)的最小正周期为π,判断A错误;对于B,当x=,函数f(x)=sin(2×+)=1,∴选项B正确;对于C,把的图象向左平移个单位,得到函数sin[2(x+)]=sin(2x+,∴选项C不正确.对于D,由,可得,k∈Z,所以在上不恒为增函数,∴选项D错误;故选B.【点睛】本题考查三角函数的基本性质的应用,函数的单调性、周期性及函数图象变换,属于基本知识的考查.8、D【解析】
由平面向量数量积的定义得出、与的等量关系,再由并代入、与的等量关系式求出的值,从而得出的大小.【详解】,,,由正弦定理边角互化思想得,,,同理得,,,则,解得,中至少有两个锐角,且,,所以,,,因此,,故选D.【点睛】本题考查平面向量的数量积的计算,考查利用正弦定理、两角和的正切公式求角的值,解题的关键就是利用三角恒等变换思想将问题转化为正切来进行计算,属于中等题.9、D【解析】
设,,则,则,将其展开,运用向量的数量积的定义,化简得到,再由余弦函数的性质,即可得到范围.【详解】设,,则,则,由于,则,则.故选:D【点睛】本题考查平面向量的数量积的定义,考查三角函数的化简和求最值,考查运算能力,属于中档题.10、C【解析】
由平面向量的坐标运算与共线定理,列方程求出λ的值.【详解】向量=(-4,5),=(λ,1),则-=(-4-λ,4),又(-)∥,所以-4-λ-4λ=0,解得λ=-.故选C.【点睛】本题考查了平面向量的坐标运算与共线定理应用问题,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用向量夹角的坐标公式即可计算.【详解】.【点睛】本题主要考查了向量夹角公式的坐标运算,属于容易题.12、165;535【解析】
按照题设要求读取随机数表得到结果,注意不符合要求的数据要舍去.【详解】读取的第一个数:满足;读取的第二个数:不满足;读取的第三个数:不满足;读取的第三个数:满足.【点睛】随机数表的读取规则:从指定位置开始,按照指定位数读取,一次读取一组,若读取的数不符合规定(不在范围之内),则舍去,重新读取.13、【解析】
设圆锥的底面半径为,母线长为,由圆锥的侧面积、圆面积公式列出方程组求解,代入圆锥的体积公式求解.【详解】设圆锥的底面半径为,母线长为,其侧面积为,底面积为,则,解得,,∴高===,∴==.故答案为:.【点睛】本题考查圆锥的体积的求法,考查圆锥的侧面积、底面积、体积公式等基础知识,考查运算求解能力,属于基础题.14、②④【解析】
结合三角函数的图象与性质对四个结论逐个分析即可得出答案.【详解】①要得到的图象,应将的图象向左平移个单位长度,所以①错误;②令,,解得,,所以直线是的一条对称轴,故②正确;③令,,解得,,因为,所以在定义域内的单调递减区间为和,所以③错误;④是奇函数,所以该说法正确.【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对的图象与性质的掌握,属于中档题.15、【解析】
由于,则,然后将代入中,化简即可得结果.【详解】,,,故答案为.【点睛】本题考查了同角三角函数的关系,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.16、【解析】
根据已知角的范围分别求出,,利用整体代换即可求解.【详解】,,,所以,,,,所以,=故答案为:【点睛】此题考查三角函数给值求值的问题,关键在于弄清角的范围,准确得出三角函数值,对所求的角进行合理变形,用已知角表示未知角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),当时,;(2)应该种植A种药材【解析】
(1)首先计算和,将数据代入公式得到回归方程,再取得到2020年单价.(2)计算B药材的平均产量,得到B药材的总产值,与(1)中A药材作比较,选出高的一个.【详解】解:(1),,当时,(2)利用概率和为1得到430—450频率/组距为0.005B药材的亩产量的平均值为:故A药材产值为B药材产值为应该种植A种药材【点睛】本题考查了回归方程及平均值的计算,意在考察学生的计算能力.18、(1)证明见解析;(2)证明见解析.【解析】
(1)利用即可证明;(2)由面面垂直的性质即可证明.【详解】证明:(1)在四棱锥中,底面是矩形,,又平面,平面;平面;(2)侧面底面,侧面平面,,平面,平面【点睛】本题考查了空间线面平行、垂直的证明,属于基础题.19、(1);(2)关于的线性回归方程为,预测该公司的销售额为百万元.【解析】
(1)列举出所有的基本事件,并确定事件“这个季度的销售额都超过千万元”然后利用古典概型的概率公式可计算出所求事件的概率;(2)计算出和的值,然后将表格中的数据代入最小二乘法公式,计算出和的值,可得出关于的线性回归方程,然后将代入回归直线方程即可得出该公司的销售额的估计值.【详解】(1)从个季度的数据中任选个季度,这个季度的销售额有种情况:、、、、、、、、、设“这个季度的销售额都超过千万元”为事件,事件包含、、,种情况,所以;(2),,,.所以关于的线性回归方程为,令,得(百万元)所以预测该公司的销售额为百万元.【点睛】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了利用最小二乘法求回归直线方程,同时也考查了回归直线方程的应用,考查计算能力,属于中等题.20、(1)4;(2)证明见解析;(3)时,平面,证明见解析.【解析】
(1)直接根据三棱柱体积计算公式求解即可;(2)利用中位线证明面面平行,再根据面面平行的性质定理证明平面;(3)首先设为,利用平面列出关于参数的方程求解即可.【详解】(1)∵三棱柱的侧棱垂直于底面,且,,,∴由三棱柱体积公式得:;(2)证明:取的中点,连接,,∵,分别为和的中点,∴,,∵平面,平面,∴平面,平面,又,∴平面平面,∵平面,∴平面;(3)连接,设,则由题意知,,∵三棱柱的侧棱垂直于底面,∴平面平面,∵,∴,又点是的中点,∴平面,∴,要使平面,只需即可,又∵,∴,∴,即,∴,则时,平面.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版酒店红酒供货合同
- 2025年度新能源汽车充电桩运营管理合同重点条款探讨3篇
- 2024政府机关绿化工程采购合同范本二零二四2篇
- 二零二五版合同能源服务与节能产品推广协议模板3篇
- 2025年度智能场馆场地租赁合同范本3篇
- 2024自建房施工合同包工包料合同
- 二零二四年度35kv架空线路施工工程设计与施工协调合同
- 2025年度金融机构外汇借款合同模板12篇
- 劳动合同编号:XX-2025年度-001
- 2025年智能燃气表推广与应用居民供气合同3篇
- 2023年湖北省武汉市高考数学一模试卷及答案解析
- 城市轨道交通的网络安全与数据保护
- 英国足球文化课件
- 《行政职业能力测验》2023年公务员考试新疆维吾尔新疆生产建设兵团可克达拉市预测试题含解析
- 医院投诉案例分析及处理要点
- 烫伤的安全知识讲座
- 工程变更、工程量签证、结算以及零星项目预算程序实施细则(试行)
- 练习20连加连减
- 五四制青岛版数学五年级上册期末测试题及答案(共3套)
- 员工内部岗位调换申请表
- 商法题库(含答案)
评论
0/150
提交评论