2024湖北省武汉市高三下学期5月模拟训练数学试题及答案_第1页
2024湖北省武汉市高三下学期5月模拟训练数学试题及答案_第2页
2024湖北省武汉市高三下学期5月模拟训练数学试题及答案_第3页
2024湖北省武汉市高三下学期5月模拟训练数学试题及答案_第4页
2024湖北省武汉市高三下学期5月模拟训练数学试题及答案_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

武汉市2024届高三年级五月模拟训练试题数学试卷武汉市教育科学研究院命制2024.5.21本试题卷共4页,19题,全卷满分150分。考试用时120分钟。★祝考试顺利★注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合A[0,a],B(2,,若AB,则()A.0a2B.0a2C.0a3D.0a32.已知向量a3),b(,则a在b上的投影向量的模为()3A.3B.1C.0D.23.设抛物线C:y4x2,过焦点F的直线与抛物线C相交于A,B两点,则||的最小值为()121418A.1B.C.D.4.已知一组数据1,2,3,4,x的上四分位数是x,则x的取值范围为()A.B.[2,C.4]D.2x10aax)ax)210x10,则a2(C.90D.90)5.若012A.180B.180π6.已知菱形ABCD,,将△DAC沿对角线AC折起,使以A,B,C,D四点为顶点的三3棱锥体积最大,则异面直线AB与CD所成角的余弦值为()353343A.B.C.D.247.抛掷一枚质地均匀的硬币n次,记事件A“n次中既有正面朝上又有反面朝上,B“n次中至多有一次正面朝上,下列说法不正确的是()1A.当n2时,P(AB)B.当n2时,事件A与事件B不独立D.当n3时,事件A与事件B不独立ab,c2,则△ABC面278C.当n3时,P(AB)8.在三角形中,角A,B,C的对边分别为a,b,c且满足c2a2积取最大值时,cosC()31312222A.B.C.D.2424二、选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,有选错的得0分,部分选对的得部分分。9.已知f(x)Ax)(A0,0,0)的部分图像如图所示,则()2A.A2B.f(x)的最小正周期为π5π5πC.f(x)在π6,内有3个极值点D.f(x)在区间,2π上的最大值为3126x210.在平面直角坐标系中,椭圆C:y21,圆O:x2y5,P为圆O上任意一点,Q为椭24圆C上任意一点.过P作椭圆C的两条切线l,l,当l,l与坐标轴不垂直时,记两切线斜率分别为k,12121k2,则()3A.椭圆C的离心率为B.||的最小值为12C.||的最大值为52D.k21k232x11.对于函数f(x),下列说法正确的是()xA.函数f(x)的单调递减区间为e)B.f(π)f(2)C.若方程|fx|)k有6个不等实数根,则keD.对任意正实数x,x,且xx,若fxfx,则xxe212121212三、填空题:本题共3小题,每小题5分,共15分。12.已知复数z满足|zi2,则|z|的最小值为______.1tan3,则sin4______.413.已知1tan14.已知正四棱台的上底面与下底面的边长之比为1:2,其内切球的半径为1,则该正四棱台的体积为.______.四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。15.(13分)已知f(x)fxx2lnx.2(1)求f并写出f(x)的表达式;(2)证明:f(x)x1.16.(15分)如图,已知四棱锥PABCD中,PA平面ABCD,四边形ABCD中,90,AB//CD,AB1,BC1,CD2,点A在平面PCD内的投影恰好是△PCD的重心G.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.17.(15分)已知双曲线E:x2y1,直线PQ与双曲线E交于P,Q两点,直线与双曲线E交于M,N两2点.(1)若直线经过坐标原点,且直线,PN的斜率k,k均存在,求kk;PN(2)设直线PQ与直线的交点为T2),且TPTQTMTN,证明:直线PQ与直线的斜率之和为0.18.(17分)某企业生产一种零部件,其质量指标介于(49.6,50.4)的为优品.技术改造前,该企业生产的该种零部件质量指标服从正态分布N(50,0.16);技术改造后,该企业生产的同种零部件质量指标服从正态分布N(50,0.04).附:若X~N,2,取PX)0.6827,PX)0.9545.(1)求该企业生产的这种零部件技术改造后的优品率与技术改造前的优品率之差;(2)若该零件生产的控制系统中每个元件正常工作的概率都是p(0p,各个元件能否正常工作相互独立,如果系统中有超过一半的元件正常工作,系统就能正常工作.系统正常工作的概率称为系统的可靠性.①若控制系统原有4个元件,计算该系统的可靠性,并判断若给该系统增加一个元件,可靠性是否提高?②假设该系统配置有n(nnN)个元件,若再增加一个元件,是否一定会提高系统的可靠性?请给出你的结论并证明.19.(17分)混沌现象普遍存在于自然界和数学模型中,比如天气预测、种群数量变化和天体运动等等,其中一维线段上的抛物线映射是混沌动力学中最基础应用最广泛的模型之一,假设在一个混沌系统中,用n来表示系统n在第nnN*个时刻的状态值,且该系统下一时刻的状态x满足xfx,0x1,其中n1n11f(x)ax2ax.(1)当a3时,若满足对nN*,有xfx,求x的通项公式;nn1n(2)证明:当a1时,x中不存在连续的三项构成等比数列;n118(3)若x,a1,记Sx2nx2,证明:SSS.1nn112n2武汉市2024届高三年级五月模拟训练试题数学试卷参考答案及评分标准一、选择题1A2345678CCCACDA二、选择题91011ABDACBCD三、填空题12.217828313.14.四、解答题215.1)因为f(x)2fx1,令x1解得f1,所以f(x)x2x2lnx.x2xx)(2)构造F(x)f(x)x1x22lnx1,F(x)2x.xx当0x1时,F(x)0,于是F(x)在单调递增;当x1时,F(x)0,于是F(x)在]单调递减,所以(x)F0,于是F(x)F0,所以f(x)x1.16.(1PA平面ABCD,BC平面ABCDPABC,90,PA与AB相交于ABC平面PAB,BC平面平面平面.(2)解:取CD中点E,CE//四边形ABCD是平行四边形AE//BCAEAB,AEAP.PA平面ABCD,AB平面ABCDPAAB.如图所示,以A为原点,AB,AE,AP所在直线为x轴,y轴,z轴建立空间直角坐标系.此时,(0,0,0),B0),C0),D(0),E0).连PEG为△PCD的重心,G在线段PE内且PE.设GEa,a,PG2a,AE平面ABCDPAAEPA9a21.由题意知,平面PCD,PE平面PCDAGPE,即9a16a2,223解得aPA2P(0,2).32由于G是△PCD的重心,所以PGPE,32221于是G,,,PB2),0).3333nPBx2z0设n(x,y,z)是平面的法向量,则nBCy0令z1,x2,n(2,.设直线与平面所成角为,则n22sin|n,.|n|||3所以直线与平面所成角的正弦值为22.317.1)当直线经过坐标原点时,M,N两点关于原点对称.0设Mx,y,Nx,y,Px,y,111100y0y01于是k1,k1.0x1因为M,N,P三点都在双曲线x2y1,2200211x所以,x2112两式作差,021202,所以2yyyyy2012kkPMPN01011.0101x2x210(2)已知T2),可设直线:y2k(x,直线PQ:y2k(x,Mx,y,1121Nx,y,Px,y,Qx,y.422334TMx1,TNxy2.2122y21(x联立直线方程与双曲线E的方程:x.2y12整理得,1kx2kk2xk210,当1k0时,0.2212211112122kk1k2kxx11,xx1.12121k1212于是,TMTNx1x1y2y212121211k21xx12k2212kk211211111211241k211k2141k同理可得,TPTQ1k22.22因为TMTNTPTQ,所以1121k221121k22整理得,12k2,而kk,所以kk0.121218.1)技术改造前,易知50,0.4,则其优品率为P(49.6X50.4)11PX250,20.4,则其优品率PX0.6827;技术改造后,111111为P(49.6X0.9545;所以优品率之差50.4)P2X2PX222222为0.95450.68270.2718.(2)①记X为原系统中正常工作元件个数,Y为增加一个元件后正常工作元件个数.由条件知,X~B(4,p),Y~Bp).P(XC43p3p)C44p4,PY53p3p)254p45pp)55.因为P(XPY6p3p)0,所以可靠性提高.2②方法一:根据上一问的假设,易知X~B(n,p),Y~B(np).n2k1kkN*,原系统的可靠性为P(Xk),新系统的可靠性为当n为奇数时,设PYk,由题意可知,PYkP(XkpP(Xk).所以,PYkP(Xk)[P(XkpP(Xk[P(XkP(Xk(pP(Xk)Ckpkp)k1(p0,这说明可靠性降低.2k1当n为偶数时,设n2kkkN*,原系统的可靠性为P(Xk,新系统的可靠性为PYk,由题意可知,PYkP(XkpP(Xk).所以,PYkP(XkpP(Xk)Ck2kpk1p)0,这说明可靠性提高.k综上,若原系统中元件个数为奇数,增加一个元件后可靠性会降低;若原系统中元件个数为偶数,增加一个元件后可靠性会提高.方法二:当n为奇数时,设n2k1kkN*,原系统的可靠性为P(Xk),新系统的可靠性为PYk,由题意可知,2k12k2P(Xk)Cipip)2ki1Cip2k1ip)2ki1p2k12k1ikik2k12k2Ci2k1pPYkCi12kpi1p)2ki1Ci12k1i1p)2ki1p2kikik于是,PYkP(Xk)2k22k2pCiCi12k1i1p)2ki1Cipip)2ki1p2kp2k12k12k1ikik2k2p)2ki1p)p2kppCiCi1C2k1ii12k12k1ik2k2Ck1pi1p)2ki1Ckpip)2kip)p2k12k12k1ikCkpkp)0,k2k1这说明可靠性降低.当n为偶数时,设n2kkkN*,原系统的可靠性为P(Xk,新系统的可靠性为PYk,由题意可知,2kP(XkCi2kpip)2kiik12k12kCpiPYkCipip)2k1ii12kCi2kp)2k1ip2k12k1ik1ik1于是,PYkP(Xk)2k2kpip)2kiCi1Ci2kCi2kpip)2kip2k12kik1ik12kp)2kp2k1CCCi12kpppiiip)2k1iCi2kpip)2kiCi2kpiiik12ki12kp)2ki(pCiip)2ki2k1pp2kik12ki12kp)2k1iCi2kpi1p)2kip2k1ik1k2kpk1p)0.kC这说明可靠性提高.综上,若原系统中元件个数为奇数,增加一个元件后可靠性会降低;若原系统中元件个数为偶数,增加一个元件后可靠性会提高.19.1)当a3时,f(x)3x3x,由题意可得,2132232①31②2312431两式作差,2x43xx0,所以x2或12.112223当xx时,代入①式解得,x0或x,因为0x1,所以x.121111344

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论