江苏省常州市教育会业水平监测2024年中考三模数学试题含解析_第1页
江苏省常州市教育会业水平监测2024年中考三模数学试题含解析_第2页
江苏省常州市教育会业水平监测2024年中考三模数学试题含解析_第3页
江苏省常州市教育会业水平监测2024年中考三模数学试题含解析_第4页
江苏省常州市教育会业水平监测2024年中考三模数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市教育会业水平监测2024年中考三模数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积()A.11 B.10 C.9 D.162.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A.中位数 B.众数 C.平均数 D.方差3.如图,立体图形的俯视图是A. B. C. D.4.下列四个实数中是无理数的是()A.2.5B.1035.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)6.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.7.下列方程中,两根之和为2的是()A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=08.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()A.7cm B.4cm C.5cm D.3cm9.如图,在中,边上的高是()A. B. C. D.10.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m1.将78000000用科学记数法表示应为()A.780×105B.78×106C.7.8×107D.0.78×108二、填空题(共7小题,每小题3分,满分21分)11.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.12.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.

13.分解因式:(2a+b)2﹣(a+2b)2=.14.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.15.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.16.二次函数的图象与y轴的交点坐标是________.17.若点M(1,m)和点N(4,n)在直线y=﹣x+b上,则m___n(填>、<或=)三、解答题(共7小题,满分69分)18.(10分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.19.(5分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD中,点E、F分别是BC、AD上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.猜想与证明:(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB交于点Q,连接MN并延长MN交EF于点O.求证:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D'所经过的路径的长为.20.(8分)如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面积;若M(x1,y1),N(x2,y2)是反比例函数y=k1x的图象上的两点,且x1<x2,y21.(10分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:.例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:.根据以上定义,解决下列问题:已知点P(3,-2).①若点A(-2,-1),则d(P,A)=;②若点B(b,2),且d(P,B)=5,则b=;③已知点C(m,n)是直线上的一个动点,且d(P,C)<3,求m的取值范围.⊙F的半径为1,圆心F的坐标为(0,t),若⊙F上存在点E,使d(E,O)=2,直接写出t的取值范围.22.(10分)已知抛物线y=ax2+c(a≠0).(1)若抛物线与x轴交于点B(4,0),且过点P(1,–3),求该抛物线的解析式;(2)若a>0,c=0,OA、OB是过抛物线顶点的两条互相垂直的直线,与抛物线分别交于A、B两点,求证:直线AB恒经过定点(0,);(3)若a>0,c<0,抛物线与x轴交于A,B两点(A在B左边),顶点为C,点P在抛物线上且位于第四象限.直线PA、PB与y轴分别交于M、N两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.23.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.求证:四边形OCED是矩形;若CE=1,DE=2,ABCD的面积是.24.(14分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【详解】如图,∵四边形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故选B.【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.2、A【解析】

根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A.点睛:本题主要考查了中位数,关键是掌握中位数定义.3、C【解析】试题分析:立体图形的俯视图是C.故选C.考点:简单组合体的三视图.4、C【解析】本题主要考查了无理数的定义.根据无理数的定义:无限不循环小数是无理数即可求解.解:A、2.5是有理数,故选项错误;B、103C、π是无理数,故选项正确;D、1.414是有理数,故选项错误.故选C.5、A【解析】

设反比例函数y=(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.【详解】设反比例函数y=(k为常数,k≠0),∵反比例函数的图象经过点(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴点(2,-3)在反比例函数y=-的图象上.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.6、D【解析】

过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.7、B【解析】

由根与系数的关系逐项判断各项方程的两根之和即可.【详解】在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;在方程x2-2x-3=0中,两根之和等于2,故B符合题意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,故选B.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.8、A【解析】

过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.【详解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,则PD的最小值是6cm,故选A.【点睛】考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.9、D【解析】

根据三角形的高线的定义解答.【详解】根据高的定义,AF为△ABC中BC边上的高.故选D.【点睛】本题考查了三角形的高的定义,熟记概念是解题的关键.10、C【解析】

科学记数法记数时,主要是准确把握标准形式a×10n即可.【详解】解:78000000=7.8×107.故选C.【点睛】科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.二、填空题(共7小题,每小题3分,满分21分)11、4【解析】试题解析:∵可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案为:4cm.12、1.【解析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).故答案为1.考点:平面展开最短路径问题13、3(a+b)(a﹣b).【解析】(2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)=4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)14、3.05×105【解析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】305000=3.05×故答案为:3.05×10【点睛】本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.15、5【解析】

根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则318=x所以另一段长为18-3=15,因为15÷3=5,所以是第5张.故答案为:5.【点睛】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.16、【解析】

求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标.【详解】把代入得:,∴该二次函数的图象与y轴的交点坐标为,故答案为.【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.17、>【解析】

根据一次函数的性质,k<0时,y随x的增大而减小.【详解】因为k=﹣<0,所以函数值y随x的增大而减小,因为1<4,所以,m>n.故答案为:>【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数的性质.三、解答题(共7小题,满分69分)18、.【解析】

先计算括号里面的,再利用除法化简原式,【详解】,=,=,=,=,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,当a=﹣3时,原式=.【点睛】本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算.19、(1)△MEF是等腰三角形(2)见解析(3)证明见解析(4)【解析】

(1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;(3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF且MO平分EF;(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.【详解】(1)△MEF是等腰三角形.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折叠后的图形如图所示:(3)如图,∵FD=BE,由折叠可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四边形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折叠可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折叠可得,∠C'EF=∠CEF,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=.故答案为.【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.20、(1)k1=1,b=6(1)15(3)点M在第三象限,点N在第一象限【解析】试题分析:(1)把A(1,8)代入y=k1x求得k1=8,把B(-4,m)代入y=k1x求得m=-1,把A(1,8)、B(-4,-1)代入y=k2x+b求得k2试题解析:解:(1)把A(1,8),B(-4,m)分别代入y=k1x∵A(1,8)、B(-4,-1)在y=k∴k2解得,k2(1)设直线y=1x+6与x轴的交点为C,当y=0时,x=-3,∴OC=3∴S△ABC=S△AOC+S△BOC=1(3)点M在第三象限,点N在第一象限.①若x1<x2<0,点M、N在第三象限的分支上,则y1②若0<x1<x2,点M、N在第一象限的分支上,则y1③若x1<0<x2,M在第三象限,点N在第一象限,则y1考点:反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质.21、(1)①6,②2或4,③1<m<4;(2)或.【解析】

(1)①根据“折线距离”的定义直接列式计算;②根据“折线距离”的定义列出方程,求解即可;③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知,根据图像易得t的取值范围.【详解】解:(1)①②∴∴b=2或4③,即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m<4(2)设E(x,y),则,如图,若点E在⊙F上,则.【点睛】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.22、(1);(2)详见解析;(3)为定值,=【解析】

(1)把点B(4,0),点P(1,–3)代入y=ax2+c(a≠0),用待定系数法求解即可;(2)如图作辅助线AE、BF垂直

x轴,设A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直线AB的解析式即可得到结论;(3)作PQ⊥AB于点Q,设P(m,am2+c)、A(–t,0)、B(t,0),则at2+c=0,c=–at2由PQ∥ON,可得ON=amt+at2,OM=–amt+at2,然后把ON,OM,OC的值代入整理即可.【详解】(1)把点B(4,0),点P(1,–3)代入y=ax2+c(a≠0),,解之得,∴;(2)如图作辅助线AE、BF垂直

x轴,设A(m,am2)、B(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论